FUENTE DUAL -15V A 15V
Uno de los primeros circuitos que se necesitan para realizar montajes electrónicos es una fuente de tensión continua, dado que casi todos los circuitos utilizan una alimentación de corriente continua para su funcionamiento.Muchos circuitos integrados necesitan además una alimentación de tipo bipolar, es decir positiva y negativa con respecto al nivel neutro o de tierra y es por eso que se necesita con frecuencia una fuente como la que aquí se presenta que proporciona dos tensiones de polaridad opuesta de +15v y -15v con respecto a la tensión de cero.Esta fuente nos permite disponer, además de las dos tensiones de polaridad opuesta, de una sola tensión de + 15v o de una tensión de + 30v cuando tomamos como referencia de tierra la tensión negativa de -15v.Además estas tensiones son lo suficientemente altas como para cumplir los requisitos de alimentación de la mayoría de los circuitos integrados y también, en caso necesario, se pueden derivar de ellas tensiones menores con circuitos estabilizadores o reguladores a base de resistores, diodos zenner y transistores.La intensidad de salida que se puede obtener en cada rama depende del transformador que utilicemos y de los circuitos integrados que proporcionan la regulación de las tensiones y que sin utilizar ningún tipo de disipadores térmicos pueden trabajar holgadamente suministrando corrientes de unos 100 mA.El circuito es el que se muestra en la figura y dada su sencillez una breve explicación bastará para comprender su funcionamiento y su montaje.
Partimos de un transformador que convierte la tensión eficaz de red de 220 v que se aplica en el primario a dos tensiones eficaces de 15 v + 15 v que se obtienen en dos secundarios independientes o bien en las dos secciones de un secundario con una toma intermedia, teniendo en cuenta que si los bobinados del secundario son independientes han de unirse dos terminales entre sí, formando un terminal común.Las tensiones alternas obtenidas en los secundarios se rectifican por medio del puente de diodos integrado, B80, cuyas salidas positiva y negativa con respecto al terminal común del secundario del transformador se filtran con sendos condensadores electrolíticos de 1000 mF / 35 v a cuya salida obtenemos tensiones continuas, aunque con un cierto rizado, y con valores medios de unos 21 v.La conversión de estas tensiones en otras de +15v y -15v respecto al punto común que tomamos como tierra, se consigue con los dos circuitos integrados LM7815 y LM7915 respectivamente que proporcionan dichas tensiones en sus salidas de forma regulada, es decir con mínimas variaciones de la tensión frente a la carga, pudiendo entregar intensidades de hasta 100 mA sin necesidad de utilizar disipadores de calor con los circuitos integrados.La intensidad máxima que se puede conseguir con estos integrados es, según las especificaciones del fabricante, de 1A siempre que utilicemos los disipadores de calor adecuados y un transformador que proporcione la potencia suficiente, que en este caso de máxima potencia sería de 35 o 40 VA ya que tenemos que tener en cuenta las pérdidas que se producen en el propio transformador y en los elementos del circuito. No obstante, no es recomendable desde el punto de vista de la fiabilidad utilizar este tipo de fuente para corrientes que estén en el límite de posibilidades de los integrados y por ello sería razonable utilizarla para corrientes de carga de hasta unos 500 mA, siempre con los disipadores de calor adecuados a cada caso.A la salida de cada línea de tensión continua se incluye además un condensador cerámico de 100 nF que tiene como misión filtrar las altas frecuencias que puedan estar presentes y hacer que la impedancia de salida de la fuente sea pequeña también para altas frecuencias.Los circuitos integrados que se incluyen en la fuente están autoprotegidos contra cortocircuitos, pero si se quiere aumentar el nivel de protección se pueden incluir también fusibles de la intensidad límite deseada en cada salida, así como un interruptor y una lampara piloto si la fuente se va a utilizar de forma independiente y no incluida en otro montaje que ya incorpore dichos dispositivos.Estos integrados, pertenecen a una familia de circuitos reguladores de tensión en la que se encuentran otros como los LM7805 y LM7905 o los LM7812 y LM7912 que se utilizan para obtener tensiones duales de ±5 v y ±12 v respectivamente, por lo que la adaptación del esquema de la fuente para otras tensiones de salida es muy sencilla y sólo hay que cambiar las especificaciones del transformador y de los condensadores electrolíticos para obtener otra fuente dual de las tensiones deseadas.El montaje de la fuente puede hacerse, dado el bajo número de componentes, en una regleta con contactos soldables aunque es más recomendable realizar un pequeño circuito impreso para que resulte más compacta y robusta, utilizando para ello una pequeña placa de fibra de vidrio con lámina de cobre por una de sus caras.Tendremos que tener precaución de mantener las polaridades correctas en la conexión de todos los componentes, en particular de los condensadores electrolíticos, respetar el esquema de conexión de los integrados, utilizar cable bifilar de 1A para la conexión del transformador a la red, para lo que necesitaremos también una clavija de enchufe de hasta 3A/220v, y cable de la sección adecuada a la intensidad que se vaya a utilizar a la salida de los secundarios y a la salida de las lineas de tensión contínua de ±15v.Cualquier comprobación o medida que se realice sobre el circuito cuando esté conectado a la red de tensión eléctrica debe hacerse con el máximo cuidado, pues existen tensiones en él que podrían resultar peligrosas para la vida y la salud de las personas.
FUENTE REGULABLE HASTA 15V
lunes, 5 de octubre de 2009
guia de analisis de fuentes
INFORMACIÓN GENERAL
Programa de formación:
No Orden (ID):
Nombre del instructor: RICARDO CORRREA ALARCÓN
Cédula:
91.252.889
Fecha de aplicación:
IDENTIFICACIÓN DE LA GUÍA
Código de la guía: 224208-01-1
ü Competencias a desarrollar: Establecer las actividades operativas en el área de
Mantenimiento electrónico e instrumental industrial de acuerdo con el plan de mantenimiento.
Resultados de aprendizaje relacionados:
ü Analizar información técnica de la maquinaria electrónica y del
o instrumental industrial de acuerdo con el plan de mantenimiento.
ü Analizar fallas y verificar funciones de la maquinaria electrónica y del
o instrumental industrial de acuerdo con las políticas de la empresa.
DESARROLLO DE LA GUIA
Proyecto:
Fuente regula de voltaje
Fase del proyecto:
ANÁLISIS
Actividad del proyecto:
ANALISIS DE FUENTES REGULADA DE PODER
Duración (semanas):
3 SEMANAS
Descripción de la actividad:
Conocimiento y análisis de las fuentes utilizados en equipos electrónicos.
Bibliografía: Documentos, cibergrafía, ambientes, medios y recursos didácticos
ACTIVIDAD DE APRENDIZAJE 1:
Descripción:
Realización de una orden de trabajo para una fuente de poder lineal o conmutada.
Consecución e Interpretación del plano de una fuente de poder lineal o conmutada realizando el reconocimiento de los componentes, símbolos electrónicos con su respectivo funcionamiento en la fuente, incluyendo la investigación sobre la hoja de especificaciones técnica de los dispositivos electrónicos encontrados en el plano.
EVIDENCIA 1:
Diseño de la orden de trabajo y ficha técnica de equipo electrónico
Tipo de Evidencia:
Desempeño
Conocimiento
Producto
X
Descripción:
Realización del formato de la orden de trabajo debidamente diligenciado
Producto entregable:
Formato de orden de trabajo y ficha técnica de equipo electrónico
Forma de entrega:
En blog y envío de copia al email del instructor o Incluirlo en plataforma B.B
Criterios de Evaluación:
Identifica y diseña una orden de trabajo de acuerdo con plan de mantenimiento.
Diligencia la orden de trabajo de acuerdo con los parámetros establecidos por la
empresa
Diseña y diligencia la ficha técnica de un equipo electrónico de acuerdo con los parámetros establecidos por la empresa
El formato debe incluir por lo menos aspectos como la caracterización del equipo o parámetros técnicos, especificaciones del operario, descripción de la necesidades, tareas o trabajos a realizar, solicitante, tiempos estimados, materiales requeridos, fechas, etc
Instrumento de Evaluación:
Tipo
Código
Cuestionario
Lista Chequeo
X
224208-01-1-LC1
Lista de Verificación
Otro:
EVIDENCIA 2:
Análisis del plano y los dispositivos electrónicos de una fuente de poder
Tipo de Evidencia:
Desempeño
Conocimiento
Producto
x
Descripción:
Análisis del plano y los dispositivos electrónicos de una fuente de poder
Producto entregable:
Levantamiento del plano de una fuente lineal o conmutada.
Identificación de los dispositivos electrónicos que están incluidos en la fuente. Recopilando todas las hojas de datos (data sheet) de cada uno de los dispositivos electrónicos presentes en la fuente
Interpretación del plano de la fuente lineal o conmutada.
Análisis de medidas y del funcionamiento de los componentes de la fuente lineal o conmutada .
Forma de entrega:
Realizar un documento donde incluya; el plano, la lista de componentes con las hojas de especificaciones y un resumen con los datos técnicos del funcionamiento de la fuente.
Todo debe quedar en el blog y envío de copia al email del instructor o Incluirlo en plataforma B.B
Criterios de Evaluación:
· Diferencia los elementos electrónicos de acuerdo con los manuales.
· Dibuja e interpreta técnicamente los diferentes componentes eléctricos y electrónicos de una máquina de acuerdo con las especificaciones técnicas de dibujo.
Instrumento de Evaluación:
Tipo
Código
Cuestionario
Lista Chequeo
X
224208-01-1-LC2
Lista de Verificación
Otro:
ACTIVIDAD DE APRENDIZAJE 2:
Descripción:
Análisis y verificación del funcionamiento de los diferentes circuitos y componentes de la fuente, lectura de parámetros eléctricos y registro en el formato de hoja de vida del equipo, para la gestión de mantenimiento. Incluyendo el diagnostico y cambio de dispositivos defectuosos si es posible.
Diseño y construcción de una fuente lineal
EVIDENCIA 1:
Análisis y verificación del funcionamiento de los diferentes circuitos y componentes de la fuente; realización de diagnostico de fallas y mantenimiento si es posible.
Tipo de Evidencia:
Desempeño
X
Conocimiento
Producto
Descripción:
Análisis y verificación del funcionamiento de los diferentes circuitos y componentes de la fuente lineal o conmutada con respectivo diagnostico y cambio de dispositivos si es necesario
Producto entregable:
Entrega del consolidado de resultados de las mediciones realizadas
Forma de entrega:
Realizar un documento donde incluya el consolidado de resultados de las mediciones realizadas y un resumen con los datos técnicos del funcionamiento y diagnostico de la falla que presenta la fuente lineal o conmutada.
Todo debe quedar en el blog y envío de copia al email del instructor o Incluirlo en plataforma B.B
Criterios de Evaluación:
ü Selecciona y opera técnicamente las herramientas adecuadas de acuerdo con las actividades de mantenimiento electrónico.
ü Selecciona con criterio técnico, los repuestos de acuerdo con las especificaciones técnicas de la maquinaria.
ü Selecciona y opera técnicamente los instrumentos de medición de acuerdo con la actividad de mantenimiento.
ü Selecciona los materiales de limpieza utilizados en mantenimiento de acuerdo con las características de las partes de la máquina.
Instrumento de Evaluación:
Tipo
Código
Cuestionario
Lista Chequeo
Lista de Verificación
X
224208-01-1-LV1
Otro:
EVIDENCIA 2:
Diseño y construcción de una fuente lineal.
Tipo de Evidencia:
Desempeño
Conocimiento
Producto
X
Descripción:
Diseño y construcción de una fuente lineal que posea una salida variable de 1.3 a 12 Vdc; otras salidas fijas de 5.0 ; 12.0; -12.0 Vdc
Producto entregable:
La fuente con los voltajes establecidos y con una capacidad de 0,8 por salida.
Forma de entrega:
Físicamente el aprendiz debe entregar la fuente lineal que posea una salida variable de 1.3 a 12 Vdc; otras salidas fijas de 5.0 ; 12.0; -12.0 Vdc;
y una capacidad de 0,8 amperios por salida.
Realizar un documento donde incluya el consolidado de plano, esquema PCB, las mediciones realizadas, el consolidado de las hojas de datos de los dispositivos utilizados, manual de operación y un resumen con los datos técnicos del funcionamiento de la fuente lineal.
Todo debe quedar en el blog y envío de copia al email del instructor o Incluirlo en plataforma B.B
Criterios de Evaluación:
ü Selecciona y opera técnicamente las herramientas adecuadas de acuerdo con las actividades de mantenimiento electrónico.
ü Selecciona con criterio técnico, los repuestos de acuerdo con las especificaciones técnicas de la maquinaria.
ü Selecciona y opera técnicamente los instrumentos de medición de acuerdo con la actividad de mantenimiento.
Instrumento de Evaluación:
Tipo
Código
Cuestionario
Lista Chequeo
X
224208-01-1-LC3
Lista de Verificación
Otro:
CONTROL DEL DOCUMENTO
Nombre
Cargo
Dependencia
Fecha
Autores
Programa de formación:
No Orden (ID):
Nombre del instructor: RICARDO CORRREA ALARCÓN
Cédula:
91.252.889
Fecha de aplicación:
IDENTIFICACIÓN DE LA GUÍA
Código de la guía: 224208-01-1
ü Competencias a desarrollar: Establecer las actividades operativas en el área de
Mantenimiento electrónico e instrumental industrial de acuerdo con el plan de mantenimiento.
Resultados de aprendizaje relacionados:
ü Analizar información técnica de la maquinaria electrónica y del
o instrumental industrial de acuerdo con el plan de mantenimiento.
ü Analizar fallas y verificar funciones de la maquinaria electrónica y del
o instrumental industrial de acuerdo con las políticas de la empresa.
DESARROLLO DE LA GUIA
Proyecto:
Fuente regula de voltaje
Fase del proyecto:
ANÁLISIS
Actividad del proyecto:
ANALISIS DE FUENTES REGULADA DE PODER
Duración (semanas):
3 SEMANAS
Descripción de la actividad:
Conocimiento y análisis de las fuentes utilizados en equipos electrónicos.
Bibliografía: Documentos, cibergrafía, ambientes, medios y recursos didácticos
ACTIVIDAD DE APRENDIZAJE 1:
Descripción:
Realización de una orden de trabajo para una fuente de poder lineal o conmutada.
Consecución e Interpretación del plano de una fuente de poder lineal o conmutada realizando el reconocimiento de los componentes, símbolos electrónicos con su respectivo funcionamiento en la fuente, incluyendo la investigación sobre la hoja de especificaciones técnica de los dispositivos electrónicos encontrados en el plano.
EVIDENCIA 1:
Diseño de la orden de trabajo y ficha técnica de equipo electrónico
Tipo de Evidencia:
Desempeño
Conocimiento
Producto
X
Descripción:
Realización del formato de la orden de trabajo debidamente diligenciado
Producto entregable:
Formato de orden de trabajo y ficha técnica de equipo electrónico
Forma de entrega:
En blog y envío de copia al email del instructor o Incluirlo en plataforma B.B
Criterios de Evaluación:
Identifica y diseña una orden de trabajo de acuerdo con plan de mantenimiento.
Diligencia la orden de trabajo de acuerdo con los parámetros establecidos por la
empresa
Diseña y diligencia la ficha técnica de un equipo electrónico de acuerdo con los parámetros establecidos por la empresa
El formato debe incluir por lo menos aspectos como la caracterización del equipo o parámetros técnicos, especificaciones del operario, descripción de la necesidades, tareas o trabajos a realizar, solicitante, tiempos estimados, materiales requeridos, fechas, etc
Instrumento de Evaluación:
Tipo
Código
Cuestionario
Lista Chequeo
X
224208-01-1-LC1
Lista de Verificación
Otro:
EVIDENCIA 2:
Análisis del plano y los dispositivos electrónicos de una fuente de poder
Tipo de Evidencia:
Desempeño
Conocimiento
Producto
x
Descripción:
Análisis del plano y los dispositivos electrónicos de una fuente de poder
Producto entregable:
Levantamiento del plano de una fuente lineal o conmutada.
Identificación de los dispositivos electrónicos que están incluidos en la fuente. Recopilando todas las hojas de datos (data sheet) de cada uno de los dispositivos electrónicos presentes en la fuente
Interpretación del plano de la fuente lineal o conmutada.
Análisis de medidas y del funcionamiento de los componentes de la fuente lineal o conmutada .
Forma de entrega:
Realizar un documento donde incluya; el plano, la lista de componentes con las hojas de especificaciones y un resumen con los datos técnicos del funcionamiento de la fuente.
Todo debe quedar en el blog y envío de copia al email del instructor o Incluirlo en plataforma B.B
Criterios de Evaluación:
· Diferencia los elementos electrónicos de acuerdo con los manuales.
· Dibuja e interpreta técnicamente los diferentes componentes eléctricos y electrónicos de una máquina de acuerdo con las especificaciones técnicas de dibujo.
Instrumento de Evaluación:
Tipo
Código
Cuestionario
Lista Chequeo
X
224208-01-1-LC2
Lista de Verificación
Otro:
ACTIVIDAD DE APRENDIZAJE 2:
Descripción:
Análisis y verificación del funcionamiento de los diferentes circuitos y componentes de la fuente, lectura de parámetros eléctricos y registro en el formato de hoja de vida del equipo, para la gestión de mantenimiento. Incluyendo el diagnostico y cambio de dispositivos defectuosos si es posible.
Diseño y construcción de una fuente lineal
EVIDENCIA 1:
Análisis y verificación del funcionamiento de los diferentes circuitos y componentes de la fuente; realización de diagnostico de fallas y mantenimiento si es posible.
Tipo de Evidencia:
Desempeño
X
Conocimiento
Producto
Descripción:
Análisis y verificación del funcionamiento de los diferentes circuitos y componentes de la fuente lineal o conmutada con respectivo diagnostico y cambio de dispositivos si es necesario
Producto entregable:
Entrega del consolidado de resultados de las mediciones realizadas
Forma de entrega:
Realizar un documento donde incluya el consolidado de resultados de las mediciones realizadas y un resumen con los datos técnicos del funcionamiento y diagnostico de la falla que presenta la fuente lineal o conmutada.
Todo debe quedar en el blog y envío de copia al email del instructor o Incluirlo en plataforma B.B
Criterios de Evaluación:
ü Selecciona y opera técnicamente las herramientas adecuadas de acuerdo con las actividades de mantenimiento electrónico.
ü Selecciona con criterio técnico, los repuestos de acuerdo con las especificaciones técnicas de la maquinaria.
ü Selecciona y opera técnicamente los instrumentos de medición de acuerdo con la actividad de mantenimiento.
ü Selecciona los materiales de limpieza utilizados en mantenimiento de acuerdo con las características de las partes de la máquina.
Instrumento de Evaluación:
Tipo
Código
Cuestionario
Lista Chequeo
Lista de Verificación
X
224208-01-1-LV1
Otro:
EVIDENCIA 2:
Diseño y construcción de una fuente lineal.
Tipo de Evidencia:
Desempeño
Conocimiento
Producto
X
Descripción:
Diseño y construcción de una fuente lineal que posea una salida variable de 1.3 a 12 Vdc; otras salidas fijas de 5.0 ; 12.0; -12.0 Vdc
Producto entregable:
La fuente con los voltajes establecidos y con una capacidad de 0,8 por salida.
Forma de entrega:
Físicamente el aprendiz debe entregar la fuente lineal que posea una salida variable de 1.3 a 12 Vdc; otras salidas fijas de 5.0 ; 12.0; -12.0 Vdc;
y una capacidad de 0,8 amperios por salida.
Realizar un documento donde incluya el consolidado de plano, esquema PCB, las mediciones realizadas, el consolidado de las hojas de datos de los dispositivos utilizados, manual de operación y un resumen con los datos técnicos del funcionamiento de la fuente lineal.
Todo debe quedar en el blog y envío de copia al email del instructor o Incluirlo en plataforma B.B
Criterios de Evaluación:
ü Selecciona y opera técnicamente las herramientas adecuadas de acuerdo con las actividades de mantenimiento electrónico.
ü Selecciona con criterio técnico, los repuestos de acuerdo con las especificaciones técnicas de la maquinaria.
ü Selecciona y opera técnicamente los instrumentos de medición de acuerdo con la actividad de mantenimiento.
Instrumento de Evaluación:
Tipo
Código
Cuestionario
Lista Chequeo
X
224208-01-1-LC3
Lista de Verificación
Otro:
CONTROL DEL DOCUMENTO
Nombre
Cargo
Dependencia
Fecha
Autores
Transformador
Transformador
Transformador de tres fases.
Se denomina transformador a una máquina eléctrica que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.
Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.
Contenid
1 Funcionamiento
2 Historia
2.1 Primeros pasos: los experimentos con bobinas de inducción
2.2 El nacimiento del primer transformador
2.3 Otra información de interés
3 Tipos de transformadores
3.1 Según sus aplicaciones
3.1.1 Transformador elevador/reductor de tensión
3.1.2 Transformador de aislamiento
3.1.3 Transformador de alimentación
3.1.4 Transformador trifásico
3.1.5 Transformador de pulsos
3.1.6 Transformador de línea o flyback
3.1.7 Transformador con diodo dividido
3.1.8 Transformador de impedancia
3.1.9 Estabilizador de tensión
3.1.10 Transformador híbrido o bobina híbrida
3.1.11 Balun
3.1.12 Transformador electrónico
3.1.13 Transformador de frecuencia variable
3.1.14 Transformadores de medida
3.2 Según su construcción
3.2.1 Autotransformador
3.2.2 Transformador toroidal
3.2.3 Transformador de grano orientado
3.2.4 Transformador de núcleo de aire
3.2.5 Transformador de núcleo envolvente
3.2.6 Transformador piezoeléctrico
4 Véase también
5 Enlaces externos
//
[editar] Funcionamiento
Representación esquemática del transformador.
Si se aplica una fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción electromagnética, la aparición de una fuerza electromotriz en los extremos del devanado secundario.
La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) .
La razón de transformación (m) del voltaje entre el bobinado primario y el secundario depende de los números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario, en el secundario habrá el triple de tensión.
Esta particularidad se utiliza en la red de transporte de energía eléctrica: al poder efectuar el transporte a altas tensiones y pequeñas intensidades, se disminuyen las pérdidas por el efecto Joule y se minimiza el costo de los conductores.
Así, si el número de espiras (vueltas) del secundario es 100 veces mayor que el del primario, al aplicar una tensión alterna de 230 voltios en el primario, se obtienen 23.000 voltios en el secundario (una relación 100 veces superior, como lo es la relación de espiras). A la relación entre el número de vueltas o espiras del primario y las del secundario se le llama relación de vueltas del transformador o relación de transformación.
Ahora bien, como la potencia aplicada en el primario, en caso de un transformador ideal, debe ser igual a la obtenida en el secundario, el producto de la fuerza electromotriz por la intensidad (potencia) debe ser constante, con lo que en el caso del ejemplo, si la intensidad circulante por el primario es de 10 amperios, la del secundario será de solo 0,1 amperios (una centésima parte).
[editar] Historia
Transformador de núcleo laminado mostrando el borde de las laminaciones en la parte superior de la unidad.
[editar] Primeros pasos: los experimentos con bobinas de inducción
El fenómeno de inducción electromagnética en el que se basa el funcionamiento del transformador fue descubierto por Michael Faraday en 1831, se basa fundamentalmente en que cualquier variación de flujo magnético que atraviesa un circuito cerrado genera una corriente inducida, y en que la corriente inducida sólo permanece mientras se produce el cambio de flujo magnético.
La primera "bobina de inducción" para ver el uso de ancho fueron inventadas por el Rev. Nicholas Callan College de Maynooth, Irlanda en 1836, uno de los primeros investigadores a darse cuenta de que cuanto más se convierte el secundario, en relación con el bobinado primario, el más grande es el aumento de la FEM.
Los científicos e investigadores basaron sus esfuerzos en evolucionar las bobinas de inducción para obtener mayores voltajes en las baterías. En lugar de corriente alterna (CA), su acción se basó en un vibrante "hacer-y-break" mecanismo que regularmente interrumpido el flujo de la corriente directa (DC) de las pilas.
Entre la década de 1830 y la década de 1870, los esfuerzos para construir mejores bobinas de inducción, en su mayoría por ensayo y error, reveló lentamente los principios básicos de los transformadores. Un diseño práctico y eficaz no apareció hasta la década de 1880, pero dentro de un decenio, el transformador sería un papel decisivo en la “Guerra de Corrientes”, y en que los sistemas de distribución de corriente alterna triunfo sobre sus homólogos de corriente continua, una posición dominante que mantienen desde entonces.
En 1876, el ingeniero ruso Pavel Yablochkov inventó un sistema de iluminación basado en un conjunto de bobinas de inducción en el que el bobinado primario se conectaba a una fuente de corriente alterna y los devanados secundarios podían conectarse a varias “velas eléctricas” (lámparas de arco), de su propio diseño. Las bobinas utilizadas en el sistema se comportaban como transformadores primitivos. La patente alegó que el sistema podría, “proporcionar suministro por separado a varios puntos de iluminación con diferentes intensidades luminosas procedentes de una sola fuente de energía eléctrica”.
En 1878, los ingenieros de la empresa Ganz en Hungría asignado parte de sus recursos de ingeniería para la fabricación de aparatos de iluminación eléctrica para Austria y Hungría.
En 1883, realizaron más de cincuenta instalaciones para dicho fin. Ofrecián un sistema que constaba de dos lámparas incandescentes y de arco, generadores y otros accesorios.
En 1882, Lucien Gaulard y John Dixon Gibbs expusieron por primera vez un dispositivo con un núcleo de hierro llamado "generador secundario" en Londres, luego vendió la idea de la compañía Westinghouse de Estados Unidos.
También fue expuesto en Turín, Italia en 1884, donde fue adaptado para el sistema de alumbrado eléctrico.
[editar] El nacimiento del primer transformador
Entre 1884 y 1885, los ingenieros húngaros Zipernowsky, Bláthy y Deri de la compañía Ganz crearon en Budapest el modelo “ZBD” de transformador de corriente alterna, basado en un diseño de Gaulard y Gibbs (Gaulard y Gibbs sólo diseñaron un modelo de núcleo abierto). Descubrieron la fórmula matemática de los transformadores:
(donde Vs es el voltaje en el secundario y Ns es el numero de espiras en el secundario, Vp y Np se corresponden al primario)
Su solicitud de patente hizo el primer uso de la palabra "transformador", una palabra que había sido acuñada por Bláthy Ottó.
En 1885, George Westinghouse compro las patentes del ZBD y las de Gaulard y Gibbs. Él le encomendó a William Stanley la construcción de un transformador de tipo ZBD para uso comercial.
Este diseño se utilizó por primera vez comercialmente en 1886.
[editar] Otra información de interés
El primer sistema comercial de corriente alterna con fines de distribución de la energía eléctrica que usaba transformadores se puso en operación en 1886 en Great Barington, Massachussets, en los Estados Unidos de América. En ese mismo año, la electricidad se transmitió a 2000 voltios en corriente alterna a una distancia de 30 kilómetros, en una línea construida en Cerchi, Italia. A partir de esta pequeñas aplicaciones iniciales, la industria eléctrica en el mundo, ha recorrido en tal forma, que en la actualidad es factor de desarrollo de los pueblos, formando parte importante en esta industria el transformador. El aparato que aquí se describe es una aplicación, entre tantas, derivada de la inicial bobina de Ruhmkorff o carrete de Ruhmkorff, que consistía en dos bobinas concéntricas. A una bobina, llamada primario, se le aplicaba una corriente continua proveniente de una batería, conmutada por medio de un ruptor movido por el magnetismo generado en un núcleo de hierro central por la propia energía de la batería. El campo magnético así creado variaba al compás de las interrupciones, y en el otro bobinado, llamado secundario y con mucho más espiras, se inducía una corriente de escaso valor pero con una fuerza eléctrica capaz de saltar entre las puntas de un chispómetro conectado a sus extremos.
También da origen a las antiguas bobinas de ignición del automóvil Ford T, que poseía una por cada bujía, comandadas por un distribuidor que mandaba la corriente a través de cada una de las bobinas en la secuencia correcta.
[editar] Tipos de transformadores
Transformador trifásico. Conexión estrella-triángulo.
[editar] Según sus aplicaciones
[editar] Transformador elevador/reductor de tensión
Son empleados de empresas transportadoras de alimentos en las subestaciones de la red de transporte de energía eléctrica, con el fin de disminuir las pérdidas por efecto Joule. Debido a la resistencia de los conductores, conviene transportar la energía eléctrica a tensiones elevadas, lo que origina la necesidad de reducir nuevamente dichas tensiones para adaptarlas a las de utilización.
[editar] Transformador de aislamiento
Proporciona aislamiento galvánico entre el primario y el secundario, de manera que consigue una alimentación o señal "flotante". Suele tener una relación 1:1. Se utiliza principalmente como medida de protección, en equipos que trabajan directamente con la tensión de red. También para acoplar señales procedentes de sensores lejanos, en equipos de electromedicina y allí donde se necesitan tensiones flotantes entre sí.
[editar] Transformador de alimentación
Pueden tener una o varias bobinas secundarias y proporcionan las tensiones necesarias para el funcionamiento del equipo. A veces incorporan fusibles que cortan su circuito primario cuando el transformador alcanza una temperatura excesiva, evitando que éste se queme, con la emisión de humos y gases que conlleva el riesgo de incendio. Estos fusibles no suelen ser reemplazables, de modo que hay que sustituir todo el transformador.
[editar] Transformador trifásico
Tienen tres bobinados en su primario y tres en su secundario. Pueden adoptar forma de estrella (Y) (con hilo de neutro o no) o de triángulo (Δ) y las combinaciones entre ellas: Δ-Δ, Δ-Y, Y-Δ y Y-Y. Hay que tener en cuenta que aún con relaciones 1:1, al pasar de Δ a Y o viceversa, las tensiones varían.
[editar] Transformador de pulsos
Es un tipo especial de transformador con respuesta muy rápida (baja autoinducción) destinado a funcionar en régimen de pulsos. y ademas un muy versátil utilidad en cuanto al control de tensión 220
[editar] Transformador de línea o flyback
Es un caso particular de transformador de pulsos. Se emplea en los televisores con TRC (CRT) para generar la alta tensión y la corriente para las bobinas de deflexión horizontal. Además suele proporcionar otras tensiones para el tubo (Foco, filamento, etc). Además de poseer una respuesta en frecuencia más alta que muchos transformadores, tiene la característica de mantener diferentes niveles de potencia de salida debido a sus diferentes arreglos entre sus bobinados secundarios
[editar] Transformador con diodo dividido
Es un tipo de transformador de línea que incorpora el diodo rectificador para proporcionar la tensión contínua de MAT directamente al tubo. Se llama diodo dividido porque está formado por varios diodos más pequeños repartidos por el bobinado y conectados en serie, de modo que cada diodo sólo tiene que soportar una tensión inversa relativamente baja. La salida del transformador va directamente al ánodo del tubo, sin diodo ni triplicador.
[editar] Transformador de impedancia
Este tipo de transformador se emplea para adaptar antenas y líneas de transmisión (tarjetas de red, teléfonos...) y era imprescindible en los amplificadores de válvulas para adaptar la alta impedancia de los tubos a la baja de los altavoces. Si se coloca en el secundario una impedancia de valor Z, y llamamos n a Ns/Np, como Is=-Ip/n y Es=Ep.n, la impedancia vista desde el primario será Ep/Ip = -Es/n²Is = Z/n². Así, hemos conseguido transformar una impedancia de valor Z en otra de Z/n². Colocando el transformador al revés, lo que hacemos es elevar la impedancia en un factor n².
[editar] Estabilizador de tensión
Es un tipo especial de transformador en el que el núcleo se satura cuando la tensión en el primario excede su valor nominal. Entonces, las variaciones de tensión en el secundario quedan limitadas. Tenía una labor de protección de los equipos frente a fluctuaciones de la red. Este tipo de transformador ha caído en desuso con el desarrollo de los reguladores de tensión electrónicos, debido a su volumen, peso, precio y baja eficiencia energética.
[editar] Transformador híbrido o bobina híbrida
Es un transformador que funciona como una híbrida. De aplicación en los teléfonos, tarjetas de red, etc.
[editar] Balun
Es muy utilizado como balun para transformar líneas equilibradas en no equilibradas y viceversa. La línea se equilibra conectando a masa la toma intermedia del secundario del transformador.
[editar] Transformador electrónico
Esta compuesto por un circuito electrónico que eleva la frecuencia de la corriente eléctrica que alimenta al transformador, de esta manera es posible reducir drásticamente su tamaño. También pueden formar parte de circuitos más complejos que mantienen la tensión de salida en un valor prefijado sin importar la variación en la entrada, llamados fuente conmutada.
[editar] Transformador de frecuencia variable
Son pequeños transformadores de núcleo de hierro, que funcionan en la banda de audiofrecuencias. Se utilizan a menudo como dispositivos de acoplamiento en circuitos electrónicos para comunicaciones, medidas y control.
[editar] Transformadores de medida
Entre los transformadores con fines especiales, los más importantes son los transformadores de medida para instalar instrumentos, contadores y relés protectores en circuitos de alta tensión o de elevada corriente. Los transformadores de medida aíslan los circuitos de medida o de relés, permitiendo una mayor normalización en la construcción de contadores, instrumentos y relés.
[editar] Según su construcción
Transformador de grano orientado
[editar] Autotransformador
Artículo principal: Autotransformador
El primario y el secundario del transformador están conectados en serie, constituyendo un bobinado único. Pesa menos y es más barato que un transformador y por ello se emplea habitualmente para convertir 220V a 125V y viceversa y en otras aplicaciones similares. Tiene el inconveniente de no proporcionar aislamiento galvánico entre el primario y el secundario.
[editar] Transformador toroidal
Pequeño transformador con núcleo toroidal.
El bobinado consiste en un anillo, normalmente de compuestos artificiales de ferrita, sobre el que se bobinan el primario y el secundario. Son más voluminosos, pero el flujo magnético queda confinado en el núcleo, teniendo flujos de dispersión muy reducidos y bajas pérdidas por corrientes de Foucault.
[editar] Transformador de grano orientado
El núcleo está formado por una chapa de hierro de grano orientado, enrollada sobre sí misma, siempre en el mismo sentido, en lugar de las láminas de hierro dulce separadas habituales. Presenta pérdidas muy reducidas pero es caro. La chapa de hierro de grano orientado puede ser también utilizada en transformadores orientados (chapa en E), reduciendo sus perdidas.
[editar] Transformador de núcleo de aire
En aplicaciones de alta frecuencia se emplean bobinados sobre un carrete sin núcleo o con un pequeño cilindro de ferrita que se introduce más o menos en el carrete, para ajustar su inductancia.
[editar] Transformador de núcleo envolvente
Están provistos de núcleos de ferrita divididos en dos mitades que, como una concha, envuelven los bobinados. Evitan los flujos de dispersión.
[editar] Transformador piezoeléctrico
Para ciertas aplicaciones han aparecido en el mercado transformadores que no están basados en el flujo magnético para transportar la energía entre el primario y el secundario, sino que se emplean vibraciones mecánicas en un cristal piezoeléctrico. Tienen la ventaja de ser muy planos y funcionar bien a frecuencias elevadas. Se usan en algunos convertidores de tensión para alimentar los fluorescentes del backlight de ordenadores portátiles.
Transformador de tres fases.
Se denomina transformador a una máquina eléctrica que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.
Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.
Contenid
1 Funcionamiento
2 Historia
2.1 Primeros pasos: los experimentos con bobinas de inducción
2.2 El nacimiento del primer transformador
2.3 Otra información de interés
3 Tipos de transformadores
3.1 Según sus aplicaciones
3.1.1 Transformador elevador/reductor de tensión
3.1.2 Transformador de aislamiento
3.1.3 Transformador de alimentación
3.1.4 Transformador trifásico
3.1.5 Transformador de pulsos
3.1.6 Transformador de línea o flyback
3.1.7 Transformador con diodo dividido
3.1.8 Transformador de impedancia
3.1.9 Estabilizador de tensión
3.1.10 Transformador híbrido o bobina híbrida
3.1.11 Balun
3.1.12 Transformador electrónico
3.1.13 Transformador de frecuencia variable
3.1.14 Transformadores de medida
3.2 Según su construcción
3.2.1 Autotransformador
3.2.2 Transformador toroidal
3.2.3 Transformador de grano orientado
3.2.4 Transformador de núcleo de aire
3.2.5 Transformador de núcleo envolvente
3.2.6 Transformador piezoeléctrico
4 Véase también
5 Enlaces externos
//
[editar] Funcionamiento
Representación esquemática del transformador.
Si se aplica una fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción electromagnética, la aparición de una fuerza electromotriz en los extremos del devanado secundario.
La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) .
La razón de transformación (m) del voltaje entre el bobinado primario y el secundario depende de los números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario, en el secundario habrá el triple de tensión.
Esta particularidad se utiliza en la red de transporte de energía eléctrica: al poder efectuar el transporte a altas tensiones y pequeñas intensidades, se disminuyen las pérdidas por el efecto Joule y se minimiza el costo de los conductores.
Así, si el número de espiras (vueltas) del secundario es 100 veces mayor que el del primario, al aplicar una tensión alterna de 230 voltios en el primario, se obtienen 23.000 voltios en el secundario (una relación 100 veces superior, como lo es la relación de espiras). A la relación entre el número de vueltas o espiras del primario y las del secundario se le llama relación de vueltas del transformador o relación de transformación.
Ahora bien, como la potencia aplicada en el primario, en caso de un transformador ideal, debe ser igual a la obtenida en el secundario, el producto de la fuerza electromotriz por la intensidad (potencia) debe ser constante, con lo que en el caso del ejemplo, si la intensidad circulante por el primario es de 10 amperios, la del secundario será de solo 0,1 amperios (una centésima parte).
[editar] Historia
Transformador de núcleo laminado mostrando el borde de las laminaciones en la parte superior de la unidad.
[editar] Primeros pasos: los experimentos con bobinas de inducción
El fenómeno de inducción electromagnética en el que se basa el funcionamiento del transformador fue descubierto por Michael Faraday en 1831, se basa fundamentalmente en que cualquier variación de flujo magnético que atraviesa un circuito cerrado genera una corriente inducida, y en que la corriente inducida sólo permanece mientras se produce el cambio de flujo magnético.
La primera "bobina de inducción" para ver el uso de ancho fueron inventadas por el Rev. Nicholas Callan College de Maynooth, Irlanda en 1836, uno de los primeros investigadores a darse cuenta de que cuanto más se convierte el secundario, en relación con el bobinado primario, el más grande es el aumento de la FEM.
Los científicos e investigadores basaron sus esfuerzos en evolucionar las bobinas de inducción para obtener mayores voltajes en las baterías. En lugar de corriente alterna (CA), su acción se basó en un vibrante "hacer-y-break" mecanismo que regularmente interrumpido el flujo de la corriente directa (DC) de las pilas.
Entre la década de 1830 y la década de 1870, los esfuerzos para construir mejores bobinas de inducción, en su mayoría por ensayo y error, reveló lentamente los principios básicos de los transformadores. Un diseño práctico y eficaz no apareció hasta la década de 1880, pero dentro de un decenio, el transformador sería un papel decisivo en la “Guerra de Corrientes”, y en que los sistemas de distribución de corriente alterna triunfo sobre sus homólogos de corriente continua, una posición dominante que mantienen desde entonces.
En 1876, el ingeniero ruso Pavel Yablochkov inventó un sistema de iluminación basado en un conjunto de bobinas de inducción en el que el bobinado primario se conectaba a una fuente de corriente alterna y los devanados secundarios podían conectarse a varias “velas eléctricas” (lámparas de arco), de su propio diseño. Las bobinas utilizadas en el sistema se comportaban como transformadores primitivos. La patente alegó que el sistema podría, “proporcionar suministro por separado a varios puntos de iluminación con diferentes intensidades luminosas procedentes de una sola fuente de energía eléctrica”.
En 1878, los ingenieros de la empresa Ganz en Hungría asignado parte de sus recursos de ingeniería para la fabricación de aparatos de iluminación eléctrica para Austria y Hungría.
En 1883, realizaron más de cincuenta instalaciones para dicho fin. Ofrecián un sistema que constaba de dos lámparas incandescentes y de arco, generadores y otros accesorios.
En 1882, Lucien Gaulard y John Dixon Gibbs expusieron por primera vez un dispositivo con un núcleo de hierro llamado "generador secundario" en Londres, luego vendió la idea de la compañía Westinghouse de Estados Unidos.
También fue expuesto en Turín, Italia en 1884, donde fue adaptado para el sistema de alumbrado eléctrico.
[editar] El nacimiento del primer transformador
Entre 1884 y 1885, los ingenieros húngaros Zipernowsky, Bláthy y Deri de la compañía Ganz crearon en Budapest el modelo “ZBD” de transformador de corriente alterna, basado en un diseño de Gaulard y Gibbs (Gaulard y Gibbs sólo diseñaron un modelo de núcleo abierto). Descubrieron la fórmula matemática de los transformadores:
(donde Vs es el voltaje en el secundario y Ns es el numero de espiras en el secundario, Vp y Np se corresponden al primario)
Su solicitud de patente hizo el primer uso de la palabra "transformador", una palabra que había sido acuñada por Bláthy Ottó.
En 1885, George Westinghouse compro las patentes del ZBD y las de Gaulard y Gibbs. Él le encomendó a William Stanley la construcción de un transformador de tipo ZBD para uso comercial.
Este diseño se utilizó por primera vez comercialmente en 1886.
[editar] Otra información de interés
El primer sistema comercial de corriente alterna con fines de distribución de la energía eléctrica que usaba transformadores se puso en operación en 1886 en Great Barington, Massachussets, en los Estados Unidos de América. En ese mismo año, la electricidad se transmitió a 2000 voltios en corriente alterna a una distancia de 30 kilómetros, en una línea construida en Cerchi, Italia. A partir de esta pequeñas aplicaciones iniciales, la industria eléctrica en el mundo, ha recorrido en tal forma, que en la actualidad es factor de desarrollo de los pueblos, formando parte importante en esta industria el transformador. El aparato que aquí se describe es una aplicación, entre tantas, derivada de la inicial bobina de Ruhmkorff o carrete de Ruhmkorff, que consistía en dos bobinas concéntricas. A una bobina, llamada primario, se le aplicaba una corriente continua proveniente de una batería, conmutada por medio de un ruptor movido por el magnetismo generado en un núcleo de hierro central por la propia energía de la batería. El campo magnético así creado variaba al compás de las interrupciones, y en el otro bobinado, llamado secundario y con mucho más espiras, se inducía una corriente de escaso valor pero con una fuerza eléctrica capaz de saltar entre las puntas de un chispómetro conectado a sus extremos.
También da origen a las antiguas bobinas de ignición del automóvil Ford T, que poseía una por cada bujía, comandadas por un distribuidor que mandaba la corriente a través de cada una de las bobinas en la secuencia correcta.
[editar] Tipos de transformadores
Transformador trifásico. Conexión estrella-triángulo.
[editar] Según sus aplicaciones
[editar] Transformador elevador/reductor de tensión
Son empleados de empresas transportadoras de alimentos en las subestaciones de la red de transporte de energía eléctrica, con el fin de disminuir las pérdidas por efecto Joule. Debido a la resistencia de los conductores, conviene transportar la energía eléctrica a tensiones elevadas, lo que origina la necesidad de reducir nuevamente dichas tensiones para adaptarlas a las de utilización.
[editar] Transformador de aislamiento
Proporciona aislamiento galvánico entre el primario y el secundario, de manera que consigue una alimentación o señal "flotante". Suele tener una relación 1:1. Se utiliza principalmente como medida de protección, en equipos que trabajan directamente con la tensión de red. También para acoplar señales procedentes de sensores lejanos, en equipos de electromedicina y allí donde se necesitan tensiones flotantes entre sí.
[editar] Transformador de alimentación
Pueden tener una o varias bobinas secundarias y proporcionan las tensiones necesarias para el funcionamiento del equipo. A veces incorporan fusibles que cortan su circuito primario cuando el transformador alcanza una temperatura excesiva, evitando que éste se queme, con la emisión de humos y gases que conlleva el riesgo de incendio. Estos fusibles no suelen ser reemplazables, de modo que hay que sustituir todo el transformador.
[editar] Transformador trifásico
Tienen tres bobinados en su primario y tres en su secundario. Pueden adoptar forma de estrella (Y) (con hilo de neutro o no) o de triángulo (Δ) y las combinaciones entre ellas: Δ-Δ, Δ-Y, Y-Δ y Y-Y. Hay que tener en cuenta que aún con relaciones 1:1, al pasar de Δ a Y o viceversa, las tensiones varían.
[editar] Transformador de pulsos
Es un tipo especial de transformador con respuesta muy rápida (baja autoinducción) destinado a funcionar en régimen de pulsos. y ademas un muy versátil utilidad en cuanto al control de tensión 220
[editar] Transformador de línea o flyback
Es un caso particular de transformador de pulsos. Se emplea en los televisores con TRC (CRT) para generar la alta tensión y la corriente para las bobinas de deflexión horizontal. Además suele proporcionar otras tensiones para el tubo (Foco, filamento, etc). Además de poseer una respuesta en frecuencia más alta que muchos transformadores, tiene la característica de mantener diferentes niveles de potencia de salida debido a sus diferentes arreglos entre sus bobinados secundarios
[editar] Transformador con diodo dividido
Es un tipo de transformador de línea que incorpora el diodo rectificador para proporcionar la tensión contínua de MAT directamente al tubo. Se llama diodo dividido porque está formado por varios diodos más pequeños repartidos por el bobinado y conectados en serie, de modo que cada diodo sólo tiene que soportar una tensión inversa relativamente baja. La salida del transformador va directamente al ánodo del tubo, sin diodo ni triplicador.
[editar] Transformador de impedancia
Este tipo de transformador se emplea para adaptar antenas y líneas de transmisión (tarjetas de red, teléfonos...) y era imprescindible en los amplificadores de válvulas para adaptar la alta impedancia de los tubos a la baja de los altavoces. Si se coloca en el secundario una impedancia de valor Z, y llamamos n a Ns/Np, como Is=-Ip/n y Es=Ep.n, la impedancia vista desde el primario será Ep/Ip = -Es/n²Is = Z/n². Así, hemos conseguido transformar una impedancia de valor Z en otra de Z/n². Colocando el transformador al revés, lo que hacemos es elevar la impedancia en un factor n².
[editar] Estabilizador de tensión
Es un tipo especial de transformador en el que el núcleo se satura cuando la tensión en el primario excede su valor nominal. Entonces, las variaciones de tensión en el secundario quedan limitadas. Tenía una labor de protección de los equipos frente a fluctuaciones de la red. Este tipo de transformador ha caído en desuso con el desarrollo de los reguladores de tensión electrónicos, debido a su volumen, peso, precio y baja eficiencia energética.
[editar] Transformador híbrido o bobina híbrida
Es un transformador que funciona como una híbrida. De aplicación en los teléfonos, tarjetas de red, etc.
[editar] Balun
Es muy utilizado como balun para transformar líneas equilibradas en no equilibradas y viceversa. La línea se equilibra conectando a masa la toma intermedia del secundario del transformador.
[editar] Transformador electrónico
Esta compuesto por un circuito electrónico que eleva la frecuencia de la corriente eléctrica que alimenta al transformador, de esta manera es posible reducir drásticamente su tamaño. También pueden formar parte de circuitos más complejos que mantienen la tensión de salida en un valor prefijado sin importar la variación en la entrada, llamados fuente conmutada.
[editar] Transformador de frecuencia variable
Son pequeños transformadores de núcleo de hierro, que funcionan en la banda de audiofrecuencias. Se utilizan a menudo como dispositivos de acoplamiento en circuitos electrónicos para comunicaciones, medidas y control.
[editar] Transformadores de medida
Entre los transformadores con fines especiales, los más importantes son los transformadores de medida para instalar instrumentos, contadores y relés protectores en circuitos de alta tensión o de elevada corriente. Los transformadores de medida aíslan los circuitos de medida o de relés, permitiendo una mayor normalización en la construcción de contadores, instrumentos y relés.
[editar] Según su construcción
Transformador de grano orientado
[editar] Autotransformador
Artículo principal: Autotransformador
El primario y el secundario del transformador están conectados en serie, constituyendo un bobinado único. Pesa menos y es más barato que un transformador y por ello se emplea habitualmente para convertir 220V a 125V y viceversa y en otras aplicaciones similares. Tiene el inconveniente de no proporcionar aislamiento galvánico entre el primario y el secundario.
[editar] Transformador toroidal
Pequeño transformador con núcleo toroidal.
El bobinado consiste en un anillo, normalmente de compuestos artificiales de ferrita, sobre el que se bobinan el primario y el secundario. Son más voluminosos, pero el flujo magnético queda confinado en el núcleo, teniendo flujos de dispersión muy reducidos y bajas pérdidas por corrientes de Foucault.
[editar] Transformador de grano orientado
El núcleo está formado por una chapa de hierro de grano orientado, enrollada sobre sí misma, siempre en el mismo sentido, en lugar de las láminas de hierro dulce separadas habituales. Presenta pérdidas muy reducidas pero es caro. La chapa de hierro de grano orientado puede ser también utilizada en transformadores orientados (chapa en E), reduciendo sus perdidas.
[editar] Transformador de núcleo de aire
En aplicaciones de alta frecuencia se emplean bobinados sobre un carrete sin núcleo o con un pequeño cilindro de ferrita que se introduce más o menos en el carrete, para ajustar su inductancia.
[editar] Transformador de núcleo envolvente
Están provistos de núcleos de ferrita divididos en dos mitades que, como una concha, envuelven los bobinados. Evitan los flujos de dispersión.
[editar] Transformador piezoeléctrico
Para ciertas aplicaciones han aparecido en el mercado transformadores que no están basados en el flujo magnético para transportar la energía entre el primario y el secundario, sino que se emplean vibraciones mecánicas en un cristal piezoeléctrico. Tienen la ventaja de ser muy planos y funcionar bien a frecuencias elevadas. Se usan en algunos convertidores de tensión para alimentar los fluorescentes del backlight de ordenadores portátiles.
Diodo
Diodo
Tipos de diodos de estado sólido
Diodo de alto vacío
Un diodo (del griego: dos caminos) es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con características similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña.
Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.
Los primeros diodos eran válvulas grandes en chips o tubos de vacío, también llamadas válvulas termoiónicas constituidas por dos electrodos rodeados de vacío en un tubo de cristal, con un aspecto similar al de las lámparas incandescentes. El invento fue realizado en 1904 por John Ambrose Fleming, de la empresa Marconi, basándose en observaciones realizadas por Thomas Alva Edison.- Al igual que las lámparas incandescentes, los tubos de vacío tienen un filamento (el cátodo) a través del que circula la corriente, calentándolo por efecto Joule. El filamento está tratado con óxido de bario, de modo que al calentarse emite electrones al vacío circundante; electrones que son conducidos electrostáticamente hacia una placa característica corvada por un muelle doble cargada positivamente (el ánodo), produciéndose así la conducción. Evidentemente, si el cátodo no se calienta, no podrá ceder electrones. Por esa razón los circuitos que utilizaban válvulas de vacío requerían un tiempo para que las válvulas se calentaran antes de poder funcionar y las válvulas se quemaban con mucha facilidad.
Contenido[ocultar]
1 Tipos de válvula diodo
2 Diodo pn o Unión pn
3 Polarización directa
4 Polarización inversa
5 Curva característica del diodo
6 Modelos matemáticos
7 Otros tipos de diodos semiconductores
8 Aplicaciones del diodo
9 Enlaces externos
//
[editar] Tipos de válvula diodo
Diodo de alto vacío
Diodo de gas
Rectificador de mercurio
[editar] Diodo pn o Unión pn
Los diodos pn, son uniones de dos materiales semiconductores extrínsecos tipos p y n, por lo que también reciben la denominación de unión pn. Hay que destacar que ninguno de los dos cristales por separado tiene carga eléctrica, ya que en cada cristal, el número de electrones y protones es el mismo, de lo que podemos decir que los dos cristales, tanto el p como el n, son neutros. (Su carga neta es 0).
Formación de la zona de carga espacial
Al unir ambos cristales, se manifiesta una difusión de electrones del cristal n al p (Je).
Al establecerse estas corrientes aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe diferentes denominaciones como zona de carga espacial, de agotamiento, de deplexión, de vaciado, etc.
A medida que progresa el proceso de difusión, la zona de carga espacial va incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p, crea un campo eléctrico (E) que actuará sobre los electrones libres de la zona n con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos.
Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas p y n. Esta diferencia de potencial (VD) es de 0,7 V en el caso del silicio y 0,3 V si los cristales son de germanio.
La anchura de la zona de carga espacial una vez alcanzado el equilibrio, suele ser del orden de 0,5 micras pero cuando uno de los cristales está mucho más dopado que el otro, la zona de carga espacial es mucho mayor.
Al dispositivo así obtenido se le denomina diodo, que en un caso como el descrito, tal que no se encuentra sometido a una diferencia de potencial externa, se dice que no está polarizado. Dado que los electrones fluyen desde la zona n hacia la zona p, al extremo p se le denomina ánodo (representándose por la letra A) mientras que al extremo n se le denomina cátodo (se representa por la letra C o K).
Existen también diodos de protección térmica los cuales son capaces de proteger cables.
A (p)
C ó K (n)
Representación simbólica del diodo pn
Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.
[editar] Polarización directa
En este caso, la batería disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad.
Para que un diodo esté polarizado directamente, tenemos que conectar el polo positivo de la batería al ánodo del diodo y el polo negativo al cátodo. En estas condiciones podemos observar que:
El polo negativo de la batería repele los electrones libres del cristal n, con lo que estos electrones se dirigen hacia la unión p-n.
El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es equivalente a decir que empuja a los huecos hacia la unión p-n.
Cuando la diferencia de potencial entre los bornes de la batería es mayor que la diferencia de potencial en la zona de carga espacial, los electrones libres del cristal n, adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales previamente se han desplazado hacia la unión p-n.
Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positivo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p, desde el cual se introduce en el hilo conductor y llega hasta la batería.
De este modo, con la batería cediendo electrones libres a la zona n y atrayendo electrones de valencia de la zona p, aparece a través del diodo una corriente eléctrica constante hasta el final.
[editar] Polarización inversa
En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como se explica a continuación:
El polo positivo de la batería atrae a los electrones libres de la zona n, los cuales salen del cristal n y se introducen en el conductor dentro del cual se desplazan hasta llegar a la batería. A medida que los electrones libres abandonan la zona n, los átomos pentavalentes que antes eran neutros, al verse desprendidos de su electrón en el orbital de conducción, adquieren estabilidad (8 electrones en la capa de valencia, ver semiconductor y átomo) y una carga eléctrica neta de +1, con lo que se convierten en iones positivos.
El polo negativo de la batería cede electrones libres a los átomos trivalentes de la zona p. Recordemos que estos átomos sólo tienen 3 electrones de valencia, con lo que una vez que han formado los enlaces covalentes con los átomos de silicio, tienen solamente 7 electrones de valencia, siendo el electrón que falta el denominado hueco. El caso es que cuando los electrones libres cedidos por la batería entran en la zona p, caen dentro de estos huecos con lo que los átomos trivalentes adquieren estabilidad (8 electrones en su orbital de valencia) y una carga eléctrica neta de -1, convirtiéndose así en iones negativos.
Este proceso se repite una y otra vez hasta que la zona de carga espacial adquiere el mismo potencial eléctrico que la batería.
En esta situación, el diodo no debería conducir la corriente; sin embargo, debido al efecto de la temperatura se formarán pares electrón-hueco (ver semiconductor) a ambos lados de la unión produciendo una pequeña corriente (del orden de 1 μA) denominada corriente inversa de saturación. Además, existe también una denominada corriente superficial de fugas la cual, como su propio nombre indica, conduce una pequeña corriente por la superficie del diodo; ya que en la superficie, los átomos de silicio no están rodeados de suficientes átomos para realizar los cuatro enlaces covalentes necesarios para obtener estabilidad. Esto hace que los átomos de la superficie del diodo, tanto de la zona n como de la p, tengan huecos en su orbital de valencia con lo que los electrones circulan sin dificultad a través de ellos. No obstante, al igual que la corriente inversa de saturación, la corriente superficial de fuga es despreciable.
[editar] Curva característica del diodo
Tensión umbral, de codo o de partida (Vγ ).La tensión umbral (también llamada barrera de potencial) de polarización directa coincide en valor con la tensión de la zona de carga espacial del diodo no polarizado. Al polarizar directamente el diodo, la barrera de potencial inicial se va reduciendo, incrementando la corriente ligeramente, alrededor del 1% de la nominal. Sin embargo, cuando la tensión externa supera la tensión umbral, la barrera de potencial desaparece, de forma que para pequeños incrementos de tensión se producen grandes variaciones de la intensidad de corriente.
Corriente máxima (Imax ).Es la intensidad de corriente máxima que puede conducir el diodo sin fundirse por el efecto Joule. Dado que es función de la cantidad de calor que puede disipar el diodo, depende sobre todo del diseño del mismo.
Corriente inversa de saturación (Is ).Es la pequeña corriente que se establece al polarizar inversamente el diodo por la
formación de pares electrón-hueco debido a la temperatura, admitiéndose que se duplica por cada incremento de 10º en la temperatura.
Corriente superficial de fugas.Es la pequeña corriente que circula por la superficie del diodo (ver polarización inversa), esta corriente es función de la tensión aplicada al diodo, con lo que al aumentar la tensión, aumenta la corriente superficial de fugas.
Tensión de ruptura (Vr ).Es la tensión inversa máxima que el diodo puede soportar antes de darse el efecto avalancha.
Teóricamente, al polarizar inversamente el diodo, este conducirá la corriente inversa de saturación; en la realidad, a partir de un determinado valor de la tensión, en el diodo normal o de unión abrupta la ruptura se debe al efecto avalancha; no obstante hay otro tipo de diodos, como los Zener, en los que la ruptura puede deberse a dos efectos:
Efecto avalancha (diodos poco dopados). En polarización inversa se generan pares electrón-hueco que provocan la corriente inversa de saturación; si la tensión inversa es elevada los electrones se aceleran incrementando su energía cinética de forma que al chocar con electrones de valencia pueden provocar su salto a la banda de conducción. Estos electrones liberados, a su vez, se aceleran por efecto de la tensión, chocando con más electrones de valencia y liberándolos a su vez. El resultado es una avalancha de electrones que provoca una corriente grande. Este fenómeno se produce para valores de la tensión superiores a 6 V.
Efecto Zener (diodos muy dopados). Cuanto más dopado está el material, menor es la anchura de la zona de carga. Puesto que el campo eléctrico E puede expresarse como cociente de la tensión V entre la distancia d; cuando el diodo esté muy dopado, y por tanto d sea pequeño, el campo eléctrico será grande, del orden de 3·105 V/cm. En estas condiciones, el propio campo puede ser capaz de arrancar electrones de valencia incrementándose la corriente. Este efecto se produce para tensiones de 4 V o menores.
Para tensiones inversas entre 4 y 6 V la ruptura de estos diodos especiales, como los Zener, se puede producir por ambos efectos.
[editar] Modelos matemáticos
El modelo matemático más empleado es el de Shockley (en honor a William Bradford Shockley) que permite aproximar el comportamiento del diodo en la mayoría de las aplicaciones. La ecuación que liga la intensidad de corriente y la diferencia de potencial es:
Donde:
I es la intensidad de la corriente que atraviesa el diodo
VD es la diferencia de tensión entre sus extremos.
IS es la corriente de saturación (aproximadamente 10 − 12A)
q es la carga del electrón cuyo valor es 1.6 * 10 − 19
T es la temperatura absoluta de la unión
k es la constante de Boltzmann
n es el coeficiente de emisión, dependiente del proceso de fabricación del diodo y que suele adoptar valores entre 1 (para el germanio) y del orden de 2 (para el silicio).
El término VT = kT/q = T/11600 es la tensión debida a la temperatura, del orden de 26 mV a temperatura ambiente (300 K ó 27 °C).
Con objeto de evitar el uso de exponenciales (a pesar de ser uno de los modelos más sencillos), en ocasiones se emplean modelos más simples aún, que modelan las zonas de funcionamiento del diodo por tramos rectos; son los llamados modelos de continua o de Ram-señal que se muestran en la figura. El más simple de todos (4) es el diodo ideal.
[editar] Otros tipos de diodos semiconductores
Diodo doble 6CH2P (6X2Π) de fabricación rusa usado como rectificador de onda media
Diodo avalancha
Fotodiodo
Diodo Gunn
Diodo láser
Diodo LED (e IRED)
Diodo p-i-n
Diodo Schottky o diodo de barrera Schottky
Diodo Shockley (diodo de cuatro capas)
Diodo túnel o diodo Esaki
Diodo Varicap
Diodo Zener
Tipos de diodos de estado sólido
Diodo de alto vacío
Un diodo (del griego: dos caminos) es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con características similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña.
Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.
Los primeros diodos eran válvulas grandes en chips o tubos de vacío, también llamadas válvulas termoiónicas constituidas por dos electrodos rodeados de vacío en un tubo de cristal, con un aspecto similar al de las lámparas incandescentes. El invento fue realizado en 1904 por John Ambrose Fleming, de la empresa Marconi, basándose en observaciones realizadas por Thomas Alva Edison.- Al igual que las lámparas incandescentes, los tubos de vacío tienen un filamento (el cátodo) a través del que circula la corriente, calentándolo por efecto Joule. El filamento está tratado con óxido de bario, de modo que al calentarse emite electrones al vacío circundante; electrones que son conducidos electrostáticamente hacia una placa característica corvada por un muelle doble cargada positivamente (el ánodo), produciéndose así la conducción. Evidentemente, si el cátodo no se calienta, no podrá ceder electrones. Por esa razón los circuitos que utilizaban válvulas de vacío requerían un tiempo para que las válvulas se calentaran antes de poder funcionar y las válvulas se quemaban con mucha facilidad.
Contenido[ocultar]
1 Tipos de válvula diodo
2 Diodo pn o Unión pn
3 Polarización directa
4 Polarización inversa
5 Curva característica del diodo
6 Modelos matemáticos
7 Otros tipos de diodos semiconductores
8 Aplicaciones del diodo
9 Enlaces externos
//
[editar] Tipos de válvula diodo
Diodo de alto vacío
Diodo de gas
Rectificador de mercurio
[editar] Diodo pn o Unión pn
Los diodos pn, son uniones de dos materiales semiconductores extrínsecos tipos p y n, por lo que también reciben la denominación de unión pn. Hay que destacar que ninguno de los dos cristales por separado tiene carga eléctrica, ya que en cada cristal, el número de electrones y protones es el mismo, de lo que podemos decir que los dos cristales, tanto el p como el n, son neutros. (Su carga neta es 0).
Formación de la zona de carga espacial
Al unir ambos cristales, se manifiesta una difusión de electrones del cristal n al p (Je).
Al establecerse estas corrientes aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe diferentes denominaciones como zona de carga espacial, de agotamiento, de deplexión, de vaciado, etc.
A medida que progresa el proceso de difusión, la zona de carga espacial va incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p, crea un campo eléctrico (E) que actuará sobre los electrones libres de la zona n con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos.
Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas p y n. Esta diferencia de potencial (VD) es de 0,7 V en el caso del silicio y 0,3 V si los cristales son de germanio.
La anchura de la zona de carga espacial una vez alcanzado el equilibrio, suele ser del orden de 0,5 micras pero cuando uno de los cristales está mucho más dopado que el otro, la zona de carga espacial es mucho mayor.
Al dispositivo así obtenido se le denomina diodo, que en un caso como el descrito, tal que no se encuentra sometido a una diferencia de potencial externa, se dice que no está polarizado. Dado que los electrones fluyen desde la zona n hacia la zona p, al extremo p se le denomina ánodo (representándose por la letra A) mientras que al extremo n se le denomina cátodo (se representa por la letra C o K).
Existen también diodos de protección térmica los cuales son capaces de proteger cables.
A (p)
C ó K (n)
Representación simbólica del diodo pn
Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.
[editar] Polarización directa
En este caso, la batería disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad.
Para que un diodo esté polarizado directamente, tenemos que conectar el polo positivo de la batería al ánodo del diodo y el polo negativo al cátodo. En estas condiciones podemos observar que:
El polo negativo de la batería repele los electrones libres del cristal n, con lo que estos electrones se dirigen hacia la unión p-n.
El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es equivalente a decir que empuja a los huecos hacia la unión p-n.
Cuando la diferencia de potencial entre los bornes de la batería es mayor que la diferencia de potencial en la zona de carga espacial, los electrones libres del cristal n, adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales previamente se han desplazado hacia la unión p-n.
Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positivo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p, desde el cual se introduce en el hilo conductor y llega hasta la batería.
De este modo, con la batería cediendo electrones libres a la zona n y atrayendo electrones de valencia de la zona p, aparece a través del diodo una corriente eléctrica constante hasta el final.
[editar] Polarización inversa
En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como se explica a continuación:
El polo positivo de la batería atrae a los electrones libres de la zona n, los cuales salen del cristal n y se introducen en el conductor dentro del cual se desplazan hasta llegar a la batería. A medida que los electrones libres abandonan la zona n, los átomos pentavalentes que antes eran neutros, al verse desprendidos de su electrón en el orbital de conducción, adquieren estabilidad (8 electrones en la capa de valencia, ver semiconductor y átomo) y una carga eléctrica neta de +1, con lo que se convierten en iones positivos.
El polo negativo de la batería cede electrones libres a los átomos trivalentes de la zona p. Recordemos que estos átomos sólo tienen 3 electrones de valencia, con lo que una vez que han formado los enlaces covalentes con los átomos de silicio, tienen solamente 7 electrones de valencia, siendo el electrón que falta el denominado hueco. El caso es que cuando los electrones libres cedidos por la batería entran en la zona p, caen dentro de estos huecos con lo que los átomos trivalentes adquieren estabilidad (8 electrones en su orbital de valencia) y una carga eléctrica neta de -1, convirtiéndose así en iones negativos.
Este proceso se repite una y otra vez hasta que la zona de carga espacial adquiere el mismo potencial eléctrico que la batería.
En esta situación, el diodo no debería conducir la corriente; sin embargo, debido al efecto de la temperatura se formarán pares electrón-hueco (ver semiconductor) a ambos lados de la unión produciendo una pequeña corriente (del orden de 1 μA) denominada corriente inversa de saturación. Además, existe también una denominada corriente superficial de fugas la cual, como su propio nombre indica, conduce una pequeña corriente por la superficie del diodo; ya que en la superficie, los átomos de silicio no están rodeados de suficientes átomos para realizar los cuatro enlaces covalentes necesarios para obtener estabilidad. Esto hace que los átomos de la superficie del diodo, tanto de la zona n como de la p, tengan huecos en su orbital de valencia con lo que los electrones circulan sin dificultad a través de ellos. No obstante, al igual que la corriente inversa de saturación, la corriente superficial de fuga es despreciable.
[editar] Curva característica del diodo
Tensión umbral, de codo o de partida (Vγ ).La tensión umbral (también llamada barrera de potencial) de polarización directa coincide en valor con la tensión de la zona de carga espacial del diodo no polarizado. Al polarizar directamente el diodo, la barrera de potencial inicial se va reduciendo, incrementando la corriente ligeramente, alrededor del 1% de la nominal. Sin embargo, cuando la tensión externa supera la tensión umbral, la barrera de potencial desaparece, de forma que para pequeños incrementos de tensión se producen grandes variaciones de la intensidad de corriente.
Corriente máxima (Imax ).Es la intensidad de corriente máxima que puede conducir el diodo sin fundirse por el efecto Joule. Dado que es función de la cantidad de calor que puede disipar el diodo, depende sobre todo del diseño del mismo.
Corriente inversa de saturación (Is ).Es la pequeña corriente que se establece al polarizar inversamente el diodo por la
formación de pares electrón-hueco debido a la temperatura, admitiéndose que se duplica por cada incremento de 10º en la temperatura.
Corriente superficial de fugas.Es la pequeña corriente que circula por la superficie del diodo (ver polarización inversa), esta corriente es función de la tensión aplicada al diodo, con lo que al aumentar la tensión, aumenta la corriente superficial de fugas.
Tensión de ruptura (Vr ).Es la tensión inversa máxima que el diodo puede soportar antes de darse el efecto avalancha.
Teóricamente, al polarizar inversamente el diodo, este conducirá la corriente inversa de saturación; en la realidad, a partir de un determinado valor de la tensión, en el diodo normal o de unión abrupta la ruptura se debe al efecto avalancha; no obstante hay otro tipo de diodos, como los Zener, en los que la ruptura puede deberse a dos efectos:
Efecto avalancha (diodos poco dopados). En polarización inversa se generan pares electrón-hueco que provocan la corriente inversa de saturación; si la tensión inversa es elevada los electrones se aceleran incrementando su energía cinética de forma que al chocar con electrones de valencia pueden provocar su salto a la banda de conducción. Estos electrones liberados, a su vez, se aceleran por efecto de la tensión, chocando con más electrones de valencia y liberándolos a su vez. El resultado es una avalancha de electrones que provoca una corriente grande. Este fenómeno se produce para valores de la tensión superiores a 6 V.
Efecto Zener (diodos muy dopados). Cuanto más dopado está el material, menor es la anchura de la zona de carga. Puesto que el campo eléctrico E puede expresarse como cociente de la tensión V entre la distancia d; cuando el diodo esté muy dopado, y por tanto d sea pequeño, el campo eléctrico será grande, del orden de 3·105 V/cm. En estas condiciones, el propio campo puede ser capaz de arrancar electrones de valencia incrementándose la corriente. Este efecto se produce para tensiones de 4 V o menores.
Para tensiones inversas entre 4 y 6 V la ruptura de estos diodos especiales, como los Zener, se puede producir por ambos efectos.
[editar] Modelos matemáticos
El modelo matemático más empleado es el de Shockley (en honor a William Bradford Shockley) que permite aproximar el comportamiento del diodo en la mayoría de las aplicaciones. La ecuación que liga la intensidad de corriente y la diferencia de potencial es:
Donde:
I es la intensidad de la corriente que atraviesa el diodo
VD es la diferencia de tensión entre sus extremos.
IS es la corriente de saturación (aproximadamente 10 − 12A)
q es la carga del electrón cuyo valor es 1.6 * 10 − 19
T es la temperatura absoluta de la unión
k es la constante de Boltzmann
n es el coeficiente de emisión, dependiente del proceso de fabricación del diodo y que suele adoptar valores entre 1 (para el germanio) y del orden de 2 (para el silicio).
El término VT = kT/q = T/11600 es la tensión debida a la temperatura, del orden de 26 mV a temperatura ambiente (300 K ó 27 °C).
Con objeto de evitar el uso de exponenciales (a pesar de ser uno de los modelos más sencillos), en ocasiones se emplean modelos más simples aún, que modelan las zonas de funcionamiento del diodo por tramos rectos; son los llamados modelos de continua o de Ram-señal que se muestran en la figura. El más simple de todos (4) es el diodo ideal.
[editar] Otros tipos de diodos semiconductores
Diodo doble 6CH2P (6X2Π) de fabricación rusa usado como rectificador de onda media
Diodo avalancha
Fotodiodo
Diodo Gunn
Diodo láser
Diodo LED (e IRED)
Diodo p-i-n
Diodo Schottky o diodo de barrera Schottky
Diodo Shockley (diodo de cuatro capas)
Diodo túnel o diodo Esaki
Diodo Varicap
Diodo Zener
transistor
Transistor
Entramado de transistores.
Entramado de transistores representando 0xA o 10 en decimal.
El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se los encuentra prácticamente en todos los artefactos domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y video, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, celulares, etc.
Contenido[ocultar]
1 Historia
2 Tipos de transistor
2.1 Transistor de punta de contacto
2.2 Transistor de unión bipolar
2.3 Transistor de unión unipolar
2.4 Transistor de efecto de campo
2.5 Fototransistor
3 Transistores y electrónica de potencia
4 El transistor como amplificador
4.1 Emisor común
4.2 Base común
4.3 Colector común
5 El transistor frente a la válvula termoiónica
6 Véase también
7 Enlaces externos
//
[editar] Historia
Artículo principal: Historia del transistor
Fue el sustituto de la válvula termoiónica de tres electrodos o triodo, el transistor bipolar fue inventado en los Laboratorios Bell de EE. UU. en diciembre de 1947 por John Bardeen, Walter Houser Brattain y William Bradford Shockley, quienes fueron galardonados con el Premio Nobel de Física en 1956.
Al principio se usaron transistores bipolares y luego se inventaron los denominados transistores de efecto de campo (FET). En los últimos, la corriente entre la fuente y la pérdida (colector) se controla usando un campo eléctrico (salida y pérdida (colector) menores). Por último, apareció el semiconductor metal-óxido FET (MOSFET). Los MOSFET permitieron un diseño extremadamente compacto, necesario para los circuitos altamente integrados (IC). Hoy la mayoría de los circuitos se construyen con la denominada tecnología CMOS (semiconductor metal-óxido complementario). La tecnología CMOS es un diseño con dos diferentes MOSFET (MOSFET de canal n y p), que se complementan mutuamente y consumen muy poca corriente en un funcionamiento sin carga.
El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicas) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.
De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación o ganancia logrado entre corriente de base y corriente de colector, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas básicos para utilización analógica de los transistores son emisor común, colector común y base común.
Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control y gradúa la conductancia del canal entre los terminales de Fuente y Drenador. De este modo, la corriente de salida en la carga conectada al Drenador (D) será función amplificada de la Tensión presente entre la Puerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo, con la salvedad que en el triodo los equivalentes a Puerta, Drenador y Fuente son Reja, Placa y Cátodo.
Los transistores de efecto de campo, son los que han permitido la integración a gran escala que disfrutamos hoy en día, para tener una idea aproximada pueden fabricarse varios miles de transistores interconectados por centímetro cuadrado y en varias capas superpuestas.
[editar] Tipos de transistor
[editar] Transistor de punta de contacto
Fue el primer transistor que obtuvo ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de emisor es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.
[editar] Transistor de unión bipolar
El transistor de unión bipolar, o BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de Galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.
La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o "huecos" (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).
La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor esta mucho más contaminado que el colector).
El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.
[editar] Transistor de unión unipolar
Tambien llamado de efecto de campo de unión (JFET), fué el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta. A uno de estos contacrtos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando a puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero. Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.
[editar] Transistor de efecto de campo
El transistor de efecto de campo, o FET por sus siglas en inglés, que controla la corriente en función de una tensión; tienen alta impedancia de entrada.
Transistor de efecto de campo de unión, JFET, construido mediante una unión PN.
Transistor de efecto de campo de compuerta aislada, IGFET, en el que la compuerta se aísla del canal mediante un dieléctrico.
Transistor de efecto de campo MOS, MOSFET, donde MOS significa Metal-Óxido-Semiconductor, en este caso la compuerta es metálica y está separada del canal semiconductor por una capa de óxido.
[editar] Fototransistor
Los fototransistores son sensibles a la radiación electromagnética, en frecuencias cercanas a la de la luz.
[editar] Transistores y electrónica de potencia
Con el desarrollo tecnológico y evolución de la electrónica, la capacidad de los dispositivos semiconductores para soportar cada vez mayores niveles de tensión y corriente ha permitido su uso en aplicaciones de potencia. Es así como actualmente los transistores son empleados en conversores estáticos de potencia, controles para motores y llaves de alta potencia (principalmente inversores), aunque su principal uso está basado en la amplificación de corriente dentro de un circuito cerrado.
[editar] El transistor como amplificador
El comportamiento del transistor se puede ver como dos diodos (Modelo de Ebers-Moll), uno entre base y emisor, polarizado en directo y otro diodo entre base y colector, polarizado en inverso. Esto quiere decir que ente base y emisor tendremos una tensión igual a la tensión directa de un diodo, es decir 0,6 a 0,8 V para un transistor de silicio y unos 0,4 para el germanio.
Pero la gracia del dispositivo es que en el colector tendremos una corriente proporcional a la corriente de base: IC = β IB, es decir, ganacia de corriente cuando β>1. Para transistores normales de señal, β varia entre 100 y 300.
Entonces, existen tres configuraciones para el amplificador:
[editar] Emisor común
Emisor común
La señal se aplica a la base del transistor y se extrae por el colector. El emisor se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganancia tanto de tensión como de corriente y alta impedancia de entrada. En caso de tener resistencia de emisor, RE > 50 Ω, y para frecuencias bajas, la ganacia en tensión se aproxima bastante bien por la siguiente expresión: ; y la impedancia de salida, por RC
Como la base está conectada al emisor por un diodo en directo, entre ellos podemos suponer una tensión constante, Vg. También supondremos que β es constante. Entonces tenemos que la tensión de emisor es: VE = VB − Vg
Y la corriente de emisor: .
La corriente de emisor es igual a la de colector más la de base: . Despejando
La tensión de salida, que es la de colector se calcula como:
Como β >> 1, se puede aproximar: y, entonces,
Que podemos escribir como
Vemos que la parte es constante (no depende de la señal de entrada), y la parte nos da la señal de salida. El signo negativo indica que la señal de salida está desfasada 180º respecto a la de entrada.
Finalmente, la ganancia queda:
La corriente de entrada, , que aproximamos por .
Suponiendo que VB>>Vg, podemos escribir:
y la impedancia de entrada:
Para tener en cuenta la influencia de frecuencia se deben utilizar modelos de transistor más elaborados. Es muy frecuente usar el modelo en pi.
[editar] Base común
Base común
La señal se aplica al emisor del transistor y se extrae por el colector. la base se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganacia sólo de tensión. La impedancia de entrada es baja y la ganancia de corriente algo menor que uno, debido a que parte de la corriente de emisor sale por la base. Si añadimos una resistencia de emisor, que puede ser la propia impedancia de salida de la fuente de señal, un análisis similar al realizado en el caso de emisor común, nos da la ganancia aproximada siguiente: .
La base común se suele utilizar para adaptar fuentes de señal de baja impedancia de salida como, por ejemplo, micrófonos dinámicos.
[editar] Colector común
Colector común
La señal se aplica a la base del transistor y se extrae por el emisor. El colector se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganacia de corriente, pero no de tensión que es ligeramente inferior a la unidad. Esta configuración multiplica la impedancia de salida por 1/β.
[editar] El transistor frente a la válvula termoiónica
Véase también: Válvula termoiónica
Antes de la aparición del transistor los ingenieros utilizaban elementos activos llamados válvulas termoiónicas. Las válvulas tienen características eléctricas similares a la de los transistores de efecto de campo (FET): la corriente que los atraviesa depende de la tensión en el borne de comando, llamado rejilla. Las razones por las que el transistor reemplazó a la válvula termoiónica son varias:
Las válvulas necesitan tensiones muy altas, del orden de las centenas de voltios, que son letales para el ser humano.
Las válvulas consumen mucha energía, lo que las vuelve particularmente poco útiles para el uso con baterías.
Probablemente, uno de los problemas más importantes haya sido el peso. El chasis necesario para alojar las válvulas y los transformadores requeridos para su funcionamiento sumaban un peso importante, que iba desde algunos kilos a decenas de kilos.
El tiempo medio entre fallas de las válvulas termoiónicas es muy corto comparado con el de los transistores, sobre todo a causa del calor generado.
Las válvulas presentan una cierta demora en comenzar a funcionar, ya que necesitan estar calientes para establecer la conducción.
El transistor es intrínsecamente insensible al efecto microfónico, muy frecuente en las válvulas.
Los transistores son más pequeños que las válvulas, incluso que los nuvistores. Aunque existe unanimidad sobre este punto, conviene hacer una salvedad: en el caso de dispositivos de potencia, estos deben llevar un disipador, de modo que el tamaño que se ha de considerar es el del dispositivo (válvula o transistor) más el del disipador. Como las válvulas pueden funcionar a temperaturas más elevadas, la eficiencia del disipador es mayor en ellas que en los transistores, con lo que basta un disipador mucho más pequeño.
Los transistores trabajan con impedancias bajas, o sea con tensiones reducidas y corrientes altas; mientras que las válvulas presentan impedancias elevadas y por lo tanto trabajan con altas tensiones pequeñas corrientes.
Finalmente, el costo de los transistores no solamente era muy inferior, sino que contaba con la promesa de que continuaría bajando (como de hecho ocurrió) con suficiente investigación y desarrollo.
Como ejemplo de todos estos inconvenientes se puede citar a la primera computadora digital, llamada ENIAC. Era un equipo que pesaba más de treinta toneladas y consumía 200 kilovatios, suficientes para alimentar una pequeña ciudad. Tenía alrededor de 18.000 válvulas, de las cuales algunas se quemaban cada día, necesitando una logística y una organización importantes.
Cuando el transistor bipolar fue inventado en 1947, fue considerado una revolución. Pequeño, rápido, fiable, poco costoso, sobrio en sus necesidades de energía, reemplazó progresivamente a la válvula termoiónica durante la década de 1950, pero no del todo. En efecto, durante los años 1960, algunos fabricantes siguieron utilizando válvulas termoiónicas en equipos de radio de gama alta, como Collins y Drake; luego el transistor desplazó a la válvula de los transmisores pero no del todo de los amplificadores de radiofrecuencia. Otros fabricantes, de equipo de audio esta vez, como Fender, siguieron utilizando válvulas en amplificadores de audio para guitarras. Las razones de la supervivencia de las válvulas termoiónicas son varias:
El transistor no tiene las características de linealidad a alta potencia de la válvula termoiónica, por lo que no pudo reemplazarla en los amplificadores de transmisión de radio profesionales y de radioaficionados.[cita requerida]
Los armónicos introducidos por la no-linealidad de las válvulas resultan agradables al oído humano (véase psicoacústica), por lo que son preferidos por los audiófilos
El transistor es muy sensible a los efectos electromagnéticos de las explosiones nucleares, por lo que se siguieron utilizando válvulas termoiónicas en algunos sistemas de control-comando de cazas de fabricación soviética
Entramado de transistores.
Entramado de transistores representando 0xA o 10 en decimal.
El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se los encuentra prácticamente en todos los artefactos domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y video, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, celulares, etc.
Contenido[ocultar]
1 Historia
2 Tipos de transistor
2.1 Transistor de punta de contacto
2.2 Transistor de unión bipolar
2.3 Transistor de unión unipolar
2.4 Transistor de efecto de campo
2.5 Fototransistor
3 Transistores y electrónica de potencia
4 El transistor como amplificador
4.1 Emisor común
4.2 Base común
4.3 Colector común
5 El transistor frente a la válvula termoiónica
6 Véase también
7 Enlaces externos
//
[editar] Historia
Artículo principal: Historia del transistor
Fue el sustituto de la válvula termoiónica de tres electrodos o triodo, el transistor bipolar fue inventado en los Laboratorios Bell de EE. UU. en diciembre de 1947 por John Bardeen, Walter Houser Brattain y William Bradford Shockley, quienes fueron galardonados con el Premio Nobel de Física en 1956.
Al principio se usaron transistores bipolares y luego se inventaron los denominados transistores de efecto de campo (FET). En los últimos, la corriente entre la fuente y la pérdida (colector) se controla usando un campo eléctrico (salida y pérdida (colector) menores). Por último, apareció el semiconductor metal-óxido FET (MOSFET). Los MOSFET permitieron un diseño extremadamente compacto, necesario para los circuitos altamente integrados (IC). Hoy la mayoría de los circuitos se construyen con la denominada tecnología CMOS (semiconductor metal-óxido complementario). La tecnología CMOS es un diseño con dos diferentes MOSFET (MOSFET de canal n y p), que se complementan mutuamente y consumen muy poca corriente en un funcionamiento sin carga.
El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicas) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.
De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación o ganancia logrado entre corriente de base y corriente de colector, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas básicos para utilización analógica de los transistores son emisor común, colector común y base común.
Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control y gradúa la conductancia del canal entre los terminales de Fuente y Drenador. De este modo, la corriente de salida en la carga conectada al Drenador (D) será función amplificada de la Tensión presente entre la Puerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo, con la salvedad que en el triodo los equivalentes a Puerta, Drenador y Fuente son Reja, Placa y Cátodo.
Los transistores de efecto de campo, son los que han permitido la integración a gran escala que disfrutamos hoy en día, para tener una idea aproximada pueden fabricarse varios miles de transistores interconectados por centímetro cuadrado y en varias capas superpuestas.
[editar] Tipos de transistor
[editar] Transistor de punta de contacto
Fue el primer transistor que obtuvo ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de emisor es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. En la actualidad ha desaparecido.
[editar] Transistor de unión bipolar
El transistor de unión bipolar, o BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de Galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.
La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o "huecos" (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N al Arsénico (As) o Fósforo (P).
La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor esta mucho más contaminado que el colector).
El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.
[editar] Transistor de unión unipolar
Tambien llamado de efecto de campo de unión (JFET), fué el primer transistor de efecto de campo en la práctica. Lo forma una barra de material semiconductor de silicio de tipo N o P. En los terminales de la barra se establece un contacto óhmico, tenemos así un transistor de efecto de campo tipo N de la forma más básica. Si se difunden dos regiones P en una barra de material N y se conectan externamente entre sí, se producirá una puerta. A uno de estos contacrtos le llamaremos surtidor y al otro drenador. Aplicando tensión positiva entre el drenador y el surtidor y conectando a puerta al surtidor, estableceremos una corriente, a la que llamaremos corriente de drenador con polarización cero. Con un potencial negativo de puerta al que llamamos tensión de estrangulamiento, cesa la conducción en el canal.
[editar] Transistor de efecto de campo
El transistor de efecto de campo, o FET por sus siglas en inglés, que controla la corriente en función de una tensión; tienen alta impedancia de entrada.
Transistor de efecto de campo de unión, JFET, construido mediante una unión PN.
Transistor de efecto de campo de compuerta aislada, IGFET, en el que la compuerta se aísla del canal mediante un dieléctrico.
Transistor de efecto de campo MOS, MOSFET, donde MOS significa Metal-Óxido-Semiconductor, en este caso la compuerta es metálica y está separada del canal semiconductor por una capa de óxido.
[editar] Fototransistor
Los fototransistores son sensibles a la radiación electromagnética, en frecuencias cercanas a la de la luz.
[editar] Transistores y electrónica de potencia
Con el desarrollo tecnológico y evolución de la electrónica, la capacidad de los dispositivos semiconductores para soportar cada vez mayores niveles de tensión y corriente ha permitido su uso en aplicaciones de potencia. Es así como actualmente los transistores son empleados en conversores estáticos de potencia, controles para motores y llaves de alta potencia (principalmente inversores), aunque su principal uso está basado en la amplificación de corriente dentro de un circuito cerrado.
[editar] El transistor como amplificador
El comportamiento del transistor se puede ver como dos diodos (Modelo de Ebers-Moll), uno entre base y emisor, polarizado en directo y otro diodo entre base y colector, polarizado en inverso. Esto quiere decir que ente base y emisor tendremos una tensión igual a la tensión directa de un diodo, es decir 0,6 a 0,8 V para un transistor de silicio y unos 0,4 para el germanio.
Pero la gracia del dispositivo es que en el colector tendremos una corriente proporcional a la corriente de base: IC = β IB, es decir, ganacia de corriente cuando β>1. Para transistores normales de señal, β varia entre 100 y 300.
Entonces, existen tres configuraciones para el amplificador:
[editar] Emisor común
Emisor común
La señal se aplica a la base del transistor y se extrae por el colector. El emisor se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganancia tanto de tensión como de corriente y alta impedancia de entrada. En caso de tener resistencia de emisor, RE > 50 Ω, y para frecuencias bajas, la ganacia en tensión se aproxima bastante bien por la siguiente expresión: ; y la impedancia de salida, por RC
Como la base está conectada al emisor por un diodo en directo, entre ellos podemos suponer una tensión constante, Vg. También supondremos que β es constante. Entonces tenemos que la tensión de emisor es: VE = VB − Vg
Y la corriente de emisor: .
La corriente de emisor es igual a la de colector más la de base: . Despejando
La tensión de salida, que es la de colector se calcula como:
Como β >> 1, se puede aproximar: y, entonces,
Que podemos escribir como
Vemos que la parte es constante (no depende de la señal de entrada), y la parte nos da la señal de salida. El signo negativo indica que la señal de salida está desfasada 180º respecto a la de entrada.
Finalmente, la ganancia queda:
La corriente de entrada, , que aproximamos por .
Suponiendo que VB>>Vg, podemos escribir:
y la impedancia de entrada:
Para tener en cuenta la influencia de frecuencia se deben utilizar modelos de transistor más elaborados. Es muy frecuente usar el modelo en pi.
[editar] Base común
Base común
La señal se aplica al emisor del transistor y se extrae por el colector. la base se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganacia sólo de tensión. La impedancia de entrada es baja y la ganancia de corriente algo menor que uno, debido a que parte de la corriente de emisor sale por la base. Si añadimos una resistencia de emisor, que puede ser la propia impedancia de salida de la fuente de señal, un análisis similar al realizado en el caso de emisor común, nos da la ganancia aproximada siguiente: .
La base común se suele utilizar para adaptar fuentes de señal de baja impedancia de salida como, por ejemplo, micrófonos dinámicos.
[editar] Colector común
Colector común
La señal se aplica a la base del transistor y se extrae por el emisor. El colector se conecta a las masas tanto de la señal de entrada como a la de salida. En esta configuración se tiene ganacia de corriente, pero no de tensión que es ligeramente inferior a la unidad. Esta configuración multiplica la impedancia de salida por 1/β.
[editar] El transistor frente a la válvula termoiónica
Véase también: Válvula termoiónica
Antes de la aparición del transistor los ingenieros utilizaban elementos activos llamados válvulas termoiónicas. Las válvulas tienen características eléctricas similares a la de los transistores de efecto de campo (FET): la corriente que los atraviesa depende de la tensión en el borne de comando, llamado rejilla. Las razones por las que el transistor reemplazó a la válvula termoiónica son varias:
Las válvulas necesitan tensiones muy altas, del orden de las centenas de voltios, que son letales para el ser humano.
Las válvulas consumen mucha energía, lo que las vuelve particularmente poco útiles para el uso con baterías.
Probablemente, uno de los problemas más importantes haya sido el peso. El chasis necesario para alojar las válvulas y los transformadores requeridos para su funcionamiento sumaban un peso importante, que iba desde algunos kilos a decenas de kilos.
El tiempo medio entre fallas de las válvulas termoiónicas es muy corto comparado con el de los transistores, sobre todo a causa del calor generado.
Las válvulas presentan una cierta demora en comenzar a funcionar, ya que necesitan estar calientes para establecer la conducción.
El transistor es intrínsecamente insensible al efecto microfónico, muy frecuente en las válvulas.
Los transistores son más pequeños que las válvulas, incluso que los nuvistores. Aunque existe unanimidad sobre este punto, conviene hacer una salvedad: en el caso de dispositivos de potencia, estos deben llevar un disipador, de modo que el tamaño que se ha de considerar es el del dispositivo (válvula o transistor) más el del disipador. Como las válvulas pueden funcionar a temperaturas más elevadas, la eficiencia del disipador es mayor en ellas que en los transistores, con lo que basta un disipador mucho más pequeño.
Los transistores trabajan con impedancias bajas, o sea con tensiones reducidas y corrientes altas; mientras que las válvulas presentan impedancias elevadas y por lo tanto trabajan con altas tensiones pequeñas corrientes.
Finalmente, el costo de los transistores no solamente era muy inferior, sino que contaba con la promesa de que continuaría bajando (como de hecho ocurrió) con suficiente investigación y desarrollo.
Como ejemplo de todos estos inconvenientes se puede citar a la primera computadora digital, llamada ENIAC. Era un equipo que pesaba más de treinta toneladas y consumía 200 kilovatios, suficientes para alimentar una pequeña ciudad. Tenía alrededor de 18.000 válvulas, de las cuales algunas se quemaban cada día, necesitando una logística y una organización importantes.
Cuando el transistor bipolar fue inventado en 1947, fue considerado una revolución. Pequeño, rápido, fiable, poco costoso, sobrio en sus necesidades de energía, reemplazó progresivamente a la válvula termoiónica durante la década de 1950, pero no del todo. En efecto, durante los años 1960, algunos fabricantes siguieron utilizando válvulas termoiónicas en equipos de radio de gama alta, como Collins y Drake; luego el transistor desplazó a la válvula de los transmisores pero no del todo de los amplificadores de radiofrecuencia. Otros fabricantes, de equipo de audio esta vez, como Fender, siguieron utilizando válvulas en amplificadores de audio para guitarras. Las razones de la supervivencia de las válvulas termoiónicas son varias:
El transistor no tiene las características de linealidad a alta potencia de la válvula termoiónica, por lo que no pudo reemplazarla en los amplificadores de transmisión de radio profesionales y de radioaficionados.[cita requerida]
Los armónicos introducidos por la no-linealidad de las válvulas resultan agradables al oído humano (véase psicoacústica), por lo que son preferidos por los audiófilos
El transistor es muy sensible a los efectos electromagnéticos de las explosiones nucleares, por lo que se siguieron utilizando válvulas termoiónicas en algunos sistemas de control-comando de cazas de fabricación soviética
Resistencia eléctrica
Resistencia eléctrica
Se denomina resistencia eléctrica, simbolizada habitualmente como R, a la dificultad u oposición que presenta un cuerpo al paso de una corriente eléctrica para circular a través de él. En el Sistema Internacional de Unidades, su valor se expresa en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro.
Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.
Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.
Comportamientos ideal y real
Figura 2. Circuito con resistencia.
Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm:
donde i(t) es la corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.
Comportamiento en corriente continua [editar]
Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:
donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.
Comportamiento en corriente alterna [editar]
Figura 3. Diagrama fasorial.
Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real. Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular....
Consideremos una resistencia R, como la de la figura 2, a la que se aplica una tensión alterna de valor:
De acuerdo con la ley de Ohm circulará una corriente alterna de valor:
donde . Se obtiene así, para la corriente, una función senoidal que está en fase con la tensión aplicada (figura 3).
Si se representa el valor eficaz de la corriente obtenida en forma polar:
Y operando matemáticamente:
De donde se deduce que en los circuitos de CA la resistencia puede considerarse como una magnitud compleja con parte real y sin parte imaginaria o, lo que es lo mismo con argumento nulo, cuya representación binómica y polar serán:
Asociación de resistencias [editar]
Resistencia equivalente [editar]
Figura 4. Asociaciones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente
Se denomina resistencia equivalente, RAB, de una asociación respecto de dos puntos A y B, a aquella que conectada la misma diferencia de potencial, UAB, demanda la misma intensidad, I (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.
Asociación en serie [editar]
Dos o más resistencias se encuentran conectadas en serie cuando al aplicar al conjunto una diferencia de potencial, todas ellas son recorridas por la misma corriente.
Para determinar la resistencia equivalente de una asociación serie imaginaremos que ambas, figuras 4a) y 4c), están conectadas a la misma diferencia de potencial, UAB. Si aplicamos la segunda ley de Kirchhoff a la asociación en serie tendremos:
Aplicando la ley de Ohm:
En la resistencia equivalente:
Finalmente, igualando ambas ecuaciones se obtiene que:
Y eliminando la intensidad:
Por lo tanto, la resistencia equivalente a n resistencias montadas en serie es igual a la suma de dichas resistencias.
Asociación en paralelo [editar]
Dos o más resistencias se encuentran en paralelo cuando tienen dos terminales comunes de modo que al aplicar al conjunto una diferencia de potencial, UAB, todas la resistencias tienen la misma caída de tensión, UAB.
Para determinar la resistencia equivalente de una asociación en paralelo imaginaremos que ambas, figuras 4b) y 4c), están conectadas a la misma diferencia de potencial mencionada, UAB, lo que originará una misma demanda de corriente eléctrica, I. Esta corriente se repartirá en la asociación por cada una de sus resistencias de acuerdo con la primera ley de Kirchhoff:
Aplicando la ley de Ohm:
En la resistencia equivalente se cumple:
Igualando ambas ecuaciones y eliminando la tensión UAB:
De donde:
Por lo que la resistencia equivalente de una asociación en paralelo es igual a la inversa de la suma de las inversas de cada una de las resistencias.
Existen dos casos particulares que suelen darse en una asociación en paralelo:
1. Dos resistencias: en este caso se puede comprobar que la resistencia equivalente es igual al producto dividido por la suma de sus valores, esto es:
2. k resistencias iguales: su equivalente resulta ser:
Asociación mixta [editar]
Figura 5. Asociaciones mixtas de cuatro resistencias: a) Serie de paralelos, b) Paralelo de series y c) Ejemplo de una de las otras posibles conexiones.
En una asociación mixta podemos encontrarnos conjuntos de resistencias en serie con conjuntos de resistencias en paralelo. En la figura 5 pueden observarse tres ejemplos de asociaciones mixtas con cuatro resistencias.
A veces una asociación mixta es necesaria ponerla en modo texto. Para ello se utilizan los símbolos "+" y "//" para designar las asociaciones serie y paralelo respectivamente. Así con (R1 + R2) se indica que R1 y R2 están en serie mientras que con (R1//R2) que están en paralelo. De acuerdo con ello, las asociaciones de la figura 5 se pondrían del siguiente modo:
a) (R1//R2)+(R3//R4)
b) (R1+R3)//(R2+R4)
c) ((R1+R2)//R3)+R4
Para determinar la resistencia equivalente de una asociación mixta se van simplificando las resistencias que están en serie y las que están en paralelo de modo que el conjunto vaya resultando cada vez más sencillo, hasta terminar con un conjunto en serie o en paralelo. Como ejemplo se determinarán las resistencias equivalentes de cada una de las asociaciones de la figura 5:
a)
R1//R2 = R1//2
R3//R4 = R3//4
RAB = R1//2 + R3//4
b)
R1+R3 = R1+3
R2+R4 = R2+4
RAB = R1+3//R2+4
c)
R1+R2 = R1+2
R1+2//R3 = R1+2//3
RAB = R1+2//3 + R4
Desarrollando se obtiene:
a)
b)
c)
Asociaciones estrella y triángulo [editar]
Artículo principal: Teorema de Kenelly
Figura 6.a) Asociación en estrella.b) Asociación en triángulo.
En la figura 6a) y b) pueden observarse respectivamente las asociaciones estrella y triángulo, también llamadas T y π o delta respectivamente. Este tipo de asociaciones son comunes en las cargas trifásicas. Las ecuaciones de equivalencia entre ambas asociaciones vienen dadas por el teorema de Kenelly:
Resistencias en estrella en función de las resistencias en triángulo (transformación de triángulo a estrella)
El valor de cada una de las resistencias en estrella es igual al cociente del producto de las dos resistencias en triángulo adyacentes al mismo terminal entre la suma de las tres resistencias en triángulo.
Resistencias en triángulo en función de las resistencias en estrella (transformación de estrella a triángulo)
El valor de cada una de las resistencias en triángulo es igual la suma de las dos resistencias en estrella adyacentes a los mismos terminales más el cociente del producto de esas dos resistencias entre la otra resistencia.
Asociación puente [editar]
Figura 7. Asociación puente.
Si en una asociación paralelo de series como la mostrada en la figura 5b se conecta una resistencia que una las dos ramas en paralelo, se obtiene una asociación puente como la mostrada en la figura 7.
La determinación de la resistencia equivalente de este tipo de asociación tiene sólo interés pedagógico. Para ello se sustituye bien una de las configuraciones en triangulo de la asociación, la R2-R4-R5 o la R3-R4-R5 por su equivalente en estrella, bien una de las configuraciones en estrella, la R1-R3-R5 o la R3-R4-R5 por su equivalente en triángulo. En ambos casos se consigue transformar el conjunto en una asociación mixta de cálculo sencillo. Otro método consiste en aplicar una fem (E) a la asociación y obtener su resistencia equivalente como relación de dicha fem y la corriente total demandada (E/I).
El interés de este tipo de asociación está en el caso en el que por la resistencia central, R5, no circula corriente, pues permite calcular los valores de una de las resitencias, R1, R2, R3 o R4, en función de las otras tres. En ello se basan los puentes de Wheatstone y de hilo para la medida de resistencias con precisión.
Resistencia de un conductor [editar]
Resistividad de algunos materiales a 20%nbsp;°C
Material
Resistividad (Ω·m)
Plata[1]
1,55 x 10-8
Cobre[2]
1,70 x 10-8
Oro[3]
2,22 x 10-8
Aluminio[4]
2,82 x 10-8
Wolframio[5]
5,65 x 10-8
Níquel[6]
6,40 x 10-8
Hierro[7]
8,90 x 10-8
Platino[8]
10,60 x 10-8
Estaño[9]
11,50 x 10-8
Acero inoxidable 301[10]
72,00 x 10-8
Grafito[11]
60,00 x 10-8
El conductor es el encargado de unir eléctricamente cada uno de los componentes de un circuito. Dado que tiene resistencia óhmica, puede ser considerado como otro componente más con características similares a las de la resistencia eléctrica.
De este modo, la resistencia de un conductor eléctrico es la medida de la oposición que presenta al movimiento de los electrones en su seno, o sea la oposición que presenta al paso de la corriente eléctrica. Generalmente su valor es muy pequeño y por ello se suele despreciar, esto es, se considera que su resistencia es nula (conductor ideal), pero habrá casos particulares en los que se deberá tener en cuenta su resistencia (conductor real).
La resistencia de un conductor depende de la longitud del mismo ( ), de su sección ( ), del tipo de material y de la temperatura. Si consideramos la temperatura constante (20 ºC), la resistencia viene dada por la siguiente expresión:
en la que es la resistividad (una característica propia de cada material).
Influencia de la temperatura [editar]
La variación de la temperatura produce una variación en la resistencia. En la mayoría de los metales aumenta su resistencia al aumentar la temperatura, por el contrario, en otros elementos, como el carbono o el germanio la resistencia disminuye.
Como ya se comentó, en algunos materiales la resistencia llega a desaparecer cuando la temperatura baja lo suficiente. En este caso se habla de superconductores.
Experimentalmente se comprueba que para temperaturas no muy elevadas, la resistencia a un determinado valor de t ( ), viene dada por la expresión:
donde
= Resistencia de referencia a 20°C.
= Coeficiente Olveriano de temperatura.
= Diferencia de temperatura respecto a los 20°C (t-20).
Potencia que disipa una resistencia [editar]
Una resistencia disipa en calor una cantidad de potencia proporcional a la intensidad que la atraviesa y a la caída de tensión que aparece en sus bornes. Esto es , aunque suele ser más cómodo usar la ley de Joule .
Observando las dimensiones del cuerpo de la resistencia, las características de conductividad de calor del material que la forma y que la recubre, y el ambiente en el cual está pensado que opere, el fabricante calcula la potencia que es capaz de disipar cada resistencia como componente discreto, sin que el aumento de temperatura provoque su destrucción. Esta temperatura de fallo puede ser muy distinta según los materiales que se estén usando. Esto es, una resistencia de 2W formada por un material que no soporte mucha temperatura, estará casi fría (y será grande); pero formada por un material metálico, con recubrimiento cerámico, podría alcanzar altas temperaturas (y podrá ser mucho más pequeña).
El fabricante dará como dato el valor en vatios que puede disipar cada resistencia en cuestión. Este valor puede estar escrito en el cuerpo del componente o se tiene que deducir de comparar su tamaño con los tamaños estándar y su respectivas potencias. El tamaño de las resistencias comunes, cuerpo cilíndrico con 2 terminales, que aparecen en los aparatos eléctricos domésticos suelen ser de 1/4 W, existiendo otros valores de potencias de comerciales de 1/2 W, 1 W, 2 W, etc.
Se denomina resistencia eléctrica, simbolizada habitualmente como R, a la dificultad u oposición que presenta un cuerpo al paso de una corriente eléctrica para circular a través de él. En el Sistema Internacional de Unidades, su valor se expresa en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro.
Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.
Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.
Comportamientos ideal y real
Figura 2. Circuito con resistencia.
Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm:
donde i(t) es la corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.
Comportamiento en corriente continua [editar]
Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:
donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.
Comportamiento en corriente alterna [editar]
Figura 3. Diagrama fasorial.
Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real. Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular....
Consideremos una resistencia R, como la de la figura 2, a la que se aplica una tensión alterna de valor:
De acuerdo con la ley de Ohm circulará una corriente alterna de valor:
donde . Se obtiene así, para la corriente, una función senoidal que está en fase con la tensión aplicada (figura 3).
Si se representa el valor eficaz de la corriente obtenida en forma polar:
Y operando matemáticamente:
De donde se deduce que en los circuitos de CA la resistencia puede considerarse como una magnitud compleja con parte real y sin parte imaginaria o, lo que es lo mismo con argumento nulo, cuya representación binómica y polar serán:
Asociación de resistencias [editar]
Resistencia equivalente [editar]
Figura 4. Asociaciones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente
Se denomina resistencia equivalente, RAB, de una asociación respecto de dos puntos A y B, a aquella que conectada la misma diferencia de potencial, UAB, demanda la misma intensidad, I (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.
Asociación en serie [editar]
Dos o más resistencias se encuentran conectadas en serie cuando al aplicar al conjunto una diferencia de potencial, todas ellas son recorridas por la misma corriente.
Para determinar la resistencia equivalente de una asociación serie imaginaremos que ambas, figuras 4a) y 4c), están conectadas a la misma diferencia de potencial, UAB. Si aplicamos la segunda ley de Kirchhoff a la asociación en serie tendremos:
Aplicando la ley de Ohm:
En la resistencia equivalente:
Finalmente, igualando ambas ecuaciones se obtiene que:
Y eliminando la intensidad:
Por lo tanto, la resistencia equivalente a n resistencias montadas en serie es igual a la suma de dichas resistencias.
Asociación en paralelo [editar]
Dos o más resistencias se encuentran en paralelo cuando tienen dos terminales comunes de modo que al aplicar al conjunto una diferencia de potencial, UAB, todas la resistencias tienen la misma caída de tensión, UAB.
Para determinar la resistencia equivalente de una asociación en paralelo imaginaremos que ambas, figuras 4b) y 4c), están conectadas a la misma diferencia de potencial mencionada, UAB, lo que originará una misma demanda de corriente eléctrica, I. Esta corriente se repartirá en la asociación por cada una de sus resistencias de acuerdo con la primera ley de Kirchhoff:
Aplicando la ley de Ohm:
En la resistencia equivalente se cumple:
Igualando ambas ecuaciones y eliminando la tensión UAB:
De donde:
Por lo que la resistencia equivalente de una asociación en paralelo es igual a la inversa de la suma de las inversas de cada una de las resistencias.
Existen dos casos particulares que suelen darse en una asociación en paralelo:
1. Dos resistencias: en este caso se puede comprobar que la resistencia equivalente es igual al producto dividido por la suma de sus valores, esto es:
2. k resistencias iguales: su equivalente resulta ser:
Asociación mixta [editar]
Figura 5. Asociaciones mixtas de cuatro resistencias: a) Serie de paralelos, b) Paralelo de series y c) Ejemplo de una de las otras posibles conexiones.
En una asociación mixta podemos encontrarnos conjuntos de resistencias en serie con conjuntos de resistencias en paralelo. En la figura 5 pueden observarse tres ejemplos de asociaciones mixtas con cuatro resistencias.
A veces una asociación mixta es necesaria ponerla en modo texto. Para ello se utilizan los símbolos "+" y "//" para designar las asociaciones serie y paralelo respectivamente. Así con (R1 + R2) se indica que R1 y R2 están en serie mientras que con (R1//R2) que están en paralelo. De acuerdo con ello, las asociaciones de la figura 5 se pondrían del siguiente modo:
a) (R1//R2)+(R3//R4)
b) (R1+R3)//(R2+R4)
c) ((R1+R2)//R3)+R4
Para determinar la resistencia equivalente de una asociación mixta se van simplificando las resistencias que están en serie y las que están en paralelo de modo que el conjunto vaya resultando cada vez más sencillo, hasta terminar con un conjunto en serie o en paralelo. Como ejemplo se determinarán las resistencias equivalentes de cada una de las asociaciones de la figura 5:
a)
R1//R2 = R1//2
R3//R4 = R3//4
RAB = R1//2 + R3//4
b)
R1+R3 = R1+3
R2+R4 = R2+4
RAB = R1+3//R2+4
c)
R1+R2 = R1+2
R1+2//R3 = R1+2//3
RAB = R1+2//3 + R4
Desarrollando se obtiene:
a)
b)
c)
Asociaciones estrella y triángulo [editar]
Artículo principal: Teorema de Kenelly
Figura 6.a) Asociación en estrella.b) Asociación en triángulo.
En la figura 6a) y b) pueden observarse respectivamente las asociaciones estrella y triángulo, también llamadas T y π o delta respectivamente. Este tipo de asociaciones son comunes en las cargas trifásicas. Las ecuaciones de equivalencia entre ambas asociaciones vienen dadas por el teorema de Kenelly:
Resistencias en estrella en función de las resistencias en triángulo (transformación de triángulo a estrella)
El valor de cada una de las resistencias en estrella es igual al cociente del producto de las dos resistencias en triángulo adyacentes al mismo terminal entre la suma de las tres resistencias en triángulo.
Resistencias en triángulo en función de las resistencias en estrella (transformación de estrella a triángulo)
El valor de cada una de las resistencias en triángulo es igual la suma de las dos resistencias en estrella adyacentes a los mismos terminales más el cociente del producto de esas dos resistencias entre la otra resistencia.
Asociación puente [editar]
Figura 7. Asociación puente.
Si en una asociación paralelo de series como la mostrada en la figura 5b se conecta una resistencia que una las dos ramas en paralelo, se obtiene una asociación puente como la mostrada en la figura 7.
La determinación de la resistencia equivalente de este tipo de asociación tiene sólo interés pedagógico. Para ello se sustituye bien una de las configuraciones en triangulo de la asociación, la R2-R4-R5 o la R3-R4-R5 por su equivalente en estrella, bien una de las configuraciones en estrella, la R1-R3-R5 o la R3-R4-R5 por su equivalente en triángulo. En ambos casos se consigue transformar el conjunto en una asociación mixta de cálculo sencillo. Otro método consiste en aplicar una fem (E) a la asociación y obtener su resistencia equivalente como relación de dicha fem y la corriente total demandada (E/I).
El interés de este tipo de asociación está en el caso en el que por la resistencia central, R5, no circula corriente, pues permite calcular los valores de una de las resitencias, R1, R2, R3 o R4, en función de las otras tres. En ello se basan los puentes de Wheatstone y de hilo para la medida de resistencias con precisión.
Resistencia de un conductor [editar]
Resistividad de algunos materiales a 20%nbsp;°C
Material
Resistividad (Ω·m)
Plata[1]
1,55 x 10-8
Cobre[2]
1,70 x 10-8
Oro[3]
2,22 x 10-8
Aluminio[4]
2,82 x 10-8
Wolframio[5]
5,65 x 10-8
Níquel[6]
6,40 x 10-8
Hierro[7]
8,90 x 10-8
Platino[8]
10,60 x 10-8
Estaño[9]
11,50 x 10-8
Acero inoxidable 301[10]
72,00 x 10-8
Grafito[11]
60,00 x 10-8
El conductor es el encargado de unir eléctricamente cada uno de los componentes de un circuito. Dado que tiene resistencia óhmica, puede ser considerado como otro componente más con características similares a las de la resistencia eléctrica.
De este modo, la resistencia de un conductor eléctrico es la medida de la oposición que presenta al movimiento de los electrones en su seno, o sea la oposición que presenta al paso de la corriente eléctrica. Generalmente su valor es muy pequeño y por ello se suele despreciar, esto es, se considera que su resistencia es nula (conductor ideal), pero habrá casos particulares en los que se deberá tener en cuenta su resistencia (conductor real).
La resistencia de un conductor depende de la longitud del mismo ( ), de su sección ( ), del tipo de material y de la temperatura. Si consideramos la temperatura constante (20 ºC), la resistencia viene dada por la siguiente expresión:
en la que es la resistividad (una característica propia de cada material).
Influencia de la temperatura [editar]
La variación de la temperatura produce una variación en la resistencia. En la mayoría de los metales aumenta su resistencia al aumentar la temperatura, por el contrario, en otros elementos, como el carbono o el germanio la resistencia disminuye.
Como ya se comentó, en algunos materiales la resistencia llega a desaparecer cuando la temperatura baja lo suficiente. En este caso se habla de superconductores.
Experimentalmente se comprueba que para temperaturas no muy elevadas, la resistencia a un determinado valor de t ( ), viene dada por la expresión:
donde
= Resistencia de referencia a 20°C.
= Coeficiente Olveriano de temperatura.
= Diferencia de temperatura respecto a los 20°C (t-20).
Potencia que disipa una resistencia [editar]
Una resistencia disipa en calor una cantidad de potencia proporcional a la intensidad que la atraviesa y a la caída de tensión que aparece en sus bornes. Esto es , aunque suele ser más cómodo usar la ley de Joule .
Observando las dimensiones del cuerpo de la resistencia, las características de conductividad de calor del material que la forma y que la recubre, y el ambiente en el cual está pensado que opere, el fabricante calcula la potencia que es capaz de disipar cada resistencia como componente discreto, sin que el aumento de temperatura provoque su destrucción. Esta temperatura de fallo puede ser muy distinta según los materiales que se estén usando. Esto es, una resistencia de 2W formada por un material que no soporte mucha temperatura, estará casi fría (y será grande); pero formada por un material metálico, con recubrimiento cerámico, podría alcanzar altas temperaturas (y podrá ser mucho más pequeña).
El fabricante dará como dato el valor en vatios que puede disipar cada resistencia en cuestión. Este valor puede estar escrito en el cuerpo del componente o se tiene que deducir de comparar su tamaño con los tamaños estándar y su respectivas potencias. El tamaño de las resistencias comunes, cuerpo cilíndrico con 2 terminales, que aparecen en los aparatos eléctricos domésticos suelen ser de 1/4 W, existiendo otros valores de potencias de comerciales de 1/2 W, 1 W, 2 W, etc.
Suscribirse a:
Entradas (Atom)